Use of Pre-treated TiO2 as Cathode Material to Produce Ti Metal Through Molten Salt Electrolysis

  • Jayashree MohantyEmail author
  • Prasant K. Behera
Technical Paper


Pre-treatment is carried out for partial reduction of TiO2 to lower valence titanium sub-oxides. The compacted pre-treated mass is electrolysed in molten CaCl2 bath at a temperature of 1000 °C for 1–5 h. The characterisations of the samples are carried out by XRD, SEM, EDS and ICP. The XRD analysis of the pre-treated mass shows the peaks of Ti2O3 and Ti4O7 along with retained TiO2 phase. The XRD analysis of the 1-h-electrolysed pre-treated sample shows the presence of various phases such as CaTi2O4, Ti2O3, Ti3O5, TiO, Ti2O and metallic Ti, whereas the same for 5-h-electrolysed sample shows only the peaks of Ti, suggesting complete conversion to metallic Ti. The SEM micrograph of the electrolysed sample shows sintering of produced Ti metal particles to form bigger particles. The chemical analysis of the electrolysed samples shows calcium as the major metallic impurity which is removed by acid washing. The comparative current–time plot for electrolysis of pre-treated TiO2 and TiO2 suggests a significantly low current consumption in case pre-treated TiO2 electrolysis than that of TiO2 electrolysis.


Pre-treated TiO2 Molten salt electrolysis Electrochemical reduction Ti metal 



The authors acknowledge SERB, DST, Government of India, for financial assistance (Sanction order- SB/FT/CS-135/2014) for carrying out this work. The authors also acknowledge STIC, Kochi University, for carrying out XRD analysis.


  1. 1.
    Kroll W J, Trans Electrochem Soc 78 (1940) 35.CrossRefGoogle Scholar
  2. 2.
    Chen G Z, Fray D J, and Farthing T W, Nature 407 (2000) 361.CrossRefGoogle Scholar
  3. 3.
    Chen G Z, Fray D J and Farthing T W, Metall Mater Trans B 32B (2001)1041.CrossRefGoogle Scholar
  4. 4.
    Fray D J, Canad Metall Quart 41 (2002) 433.CrossRefGoogle Scholar
  5. 5.
    Fray D J, and Chen G Z, Mater Sci Tech 20 (2004) 295.CrossRefGoogle Scholar
  6. 6.
    Suzuki R O, and Inoue S, Met Mater Trans B 34 (2003) 277.CrossRefGoogle Scholar
  7. 7.
    Suzuki R O, Teranuma K, and Ono K, Met Mater Trans B 34 (2003) 287.CrossRefGoogle Scholar
  8. 8.
    Suzuki R O, J Phys Chem Solids 66 (2005) 461.CrossRefGoogle Scholar
  9. 9.
    Suzuki R O, J Metals 68 (2007).Google Scholar
  10. 10.
    Jewell D, Jiao S, Kurtanjek M, and Fray D J, Titanium Metal Production Via Oxycarbide Electrorefining, International Titanium Association (2012).Google Scholar
  11. 11.
    Wang Q, Song J, Wu J, Jiao S, Hou J, and Zhu H, Phys Chem Chem Phys (2014) 17.Google Scholar
  12. 12.
    Hu D, Dolganov A, Ma M, Bhattacharya B, Bishop M T, and Chen G Z, J Metals 70 (2018) 129.Google Scholar
  13. 13.
    Patent WO2007097823A2.Google Scholar
  14. 14.
    Yang D, Liu Y, Ye J, Wang G and He W, Mater Lett 233 (2018) 28.CrossRefGoogle Scholar
  15. 15.
    Huang S S, Lin Y H, Chuang W, Shao P S, Chuang C H, Lee J F, Lu M L, Wang Y T and Wu N Z, Sustain Chem Eng (2018). Scholar
  16. 16.
    Schwandt C and Fray D J, Electrochem Acta 51 (2005) 66.CrossRefGoogle Scholar
  17. 17.
    Mohanty J, Mishra K G, Paramguru R K, and Mishra B K, Metall Mater Trans B 43 (2012) 513.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of ChemistryC.V. Raman College of EngineeringBhubaneswarIndia

Personalised recommendations