Effect of Recovery and Recrystallization on the Damping Behaviour of A356/SiCp Composites

  • M. S. Bhaskar
  • M. K. Surappa
Technical Paper


Damping characteristics of A356 alloy and its composites reinforced with 15 vol% SiC particles were investigated using a dynamic mechanical analyzer. Tests were done at three different temperatures 150 °C, 200 °C and 300 °C to study the influence of microstructural changes during recovery and recrystallization on the damping behaviour. Since recovery and recrystallization also depend on the heating rate, damping tests were done at slow (2 °C/min) and fast (10 °C/min) heating rates. The damping characteristics were explained with respect to the microstructure changes that took place during recovery and recrystallization.


Metal-matrix composites Damping Casting Extrusion 


  1. 1.
    Stephens J J, Lucas J P, and Hosking F M, Scr Metall 22 (1988) 1307.CrossRefGoogle Scholar
  2. 2.
    Bayoumi M A, Ribes R, and Suery M, Aging characteristics of Sic-particle reinforced Al-Si alloy, in Proceedings of 9th International Symposium in Metallurgy and Materials Science, Riso, Denmark, vol 8, p 291 (1988).Google Scholar
  3. 3.
    Kumai S, Hu J, Higo Y, and Nunomura S, Scr Metall Mater 27 (1992) 107.CrossRefGoogle Scholar
  4. 4.
    Cottu J P, Couderc J J, Viguier B, and Bernard L, J Mater Sci 27 (1992) 3068.CrossRefGoogle Scholar
  5. 5.
    Salvo L, L’Esprance G, Sury M, and Legoux J G, Mater Sci Eng A 177 (1994) 173.CrossRefGoogle Scholar
  6. 6.
    Samuel A M and Samuel F H, Metall Trans A 24 (1993) 1857.CrossRefGoogle Scholar
  7. 7.
    Wang Z and Zhang R J, Metall Trans A 22 (1991) 1585.CrossRefGoogle Scholar
  8. 8.
    Rozak G A, Lewandowski J J, Wallace J F, and Altmisoglu A, J Compos Mater 26 (1993) 2076.CrossRefGoogle Scholar
  9. 9.
    Alpas A T and Zhang J, Scr Metall Mater 26 (1992) 505.CrossRefGoogle Scholar
  10. 10.
    Alpas A T and Zhang J, Wear 155 (1992) 83.CrossRefGoogle Scholar
  11. 11.
    Wood J V, Davies P, and Kellie J L F, Mater Sci Technol 9 (1993) 833.CrossRefGoogle Scholar
  12. 12.
    Garca-Cordovilla C, Louis E, Narciso J, and Pamies A, Mater Sci Eng A 189 (1994) 219.CrossRefGoogle Scholar
  13. 13.
    Zhang J, Perez R J, Wong C R, and Lavernia E J, Mater Sci Eng R Rep 13 (1994) 325.CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Ma N, Li X, and Wang H, Mater Des 29 (2008) 1057.CrossRefGoogle Scholar
  15. 15.
    Zhang X, Liao L, Ma N, and Wang H, Compos Part A Appl Sci Manuf 37 (2006) 2011.CrossRefGoogle Scholar
  16. 16.
    Lu Y X, Lee C S, Li R K Y, and Lai J K L, J Mater Process Technol 91 (1999) 215.CrossRefGoogle Scholar
  17. 17.
    Xiuqing Z, Haowei W, Lihua L, and Naiheng M, Compos Sci Technol 67 (2007) 720.CrossRefGoogle Scholar
  18. 18.
    Sastry S, Krishna M, and Uchil J, J Alloys Compd 314 (2001) 268.CrossRefGoogle Scholar
  19. 19.
    Groma I and Szekely F, J Appl Crystallogr 33 (2000) 1329.CrossRefGoogle Scholar
  20. 20.
    Lavernia E J, Perez R J, and Zhang J, Metallur Mater Trans A 26 (1995) 2803.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Metallurgical and Materials Engineering DepartmentNational Institute of Technology WarangalHanamkondaIndia
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations