Advertisement

Perovskite Ceramics as New-Generation Materials for Orthopedic Applications

  • Ashutosh Kumar Dubey
  • K. Ravikumar
  • Bikramjit BasuEmail author
Technical Paper
  • 19 Downloads

Abstract

The piezoelectric properties of ferroelectric ceramics have been widely investigated in the materials science community, but relatively less is known about such properties of natural living system. Inspired by the knowledge that the piezoelectric properties influence the metabolic activities of natural bone, the design and development of bone-mimicking electrically active synthetic orthopedic implant materials has gained an excellent distinction in the biomaterials community. In this perspective, the present article briefly reviews the origin of fundamental electrical responses in natural bone along with their biological consequences. In this sequence, the potentiality of multifunctional electrically active perovskites (CaTiO3, BaTiO3, Na0.5K0.5NbO3 etc.) as promising bone substitute has been discussed. The results of several published studies from the author’s research group are summarized to highlight the cytocompatibility and histocompatibility of those perovskites. Further, the influence of incorporation of these piezoelectric materials as secondary phases in a bioactive matrix in improving the electromechanical response of composite has also been discussed briefly. It is perceived that this review will stimulate further research to explore the biomedical applications of these functional oxides.

Keywords

Perovskite ceramics Polarization Cell response Tissue engineering 

Notes

Acknowledgements

The financial support from the Science and Engineering Research Board (SERB), DST, Govt. of India, is gratefully acknowledged.

References

  1. 1.
    Basu B, Katti D S, and Kumar A, Advanced Biomaterials: Fundamentals, Processing and Applications. Wiley, Hoboken (2009).CrossRefGoogle Scholar
  2. 2.
    Basu B, and Balani K, Advanced Structural Ceramics. Wiley, Hoboken (2009).Google Scholar
  3. 3.
    Nath S, Kalmodia S, and Basu B, J Biomater Appl 27 (2011) 497.CrossRefGoogle Scholar
  4. 4.
    Nath S, Basu B, Mohanty M, and Mohanan PV, J Biomed Mater Res Part B: Appl Biomater 90B (2009) 547.CrossRefGoogle Scholar
  5. 5.
    Nath S, Bodhak S, and Basu B J Biomed Mater Res Part B Appl Biomater 88B (2009) 1.CrossRefGoogle Scholar
  6. 6.
    Basu B, Biomaterials Science and Tissue Engineering: Principles and Methods. Cambridge University Press, Cambridge (2017).Google Scholar
  7. 7.
    Geetha M, Singh A K, Asokamani R, Gogia A K, Prog Mater Sci 54 (2009) 397.CrossRefGoogle Scholar
  8. 8.
    Basu B, and Ghosh S, Biomaterials for Musculoskeletal Regeneration Springer, Berlin(2017).Google Scholar
  9. 9.
    Bassett CAL and Becker R O, Science 137 (1962) 1063.CrossRefGoogle Scholar
  10. 10.
    Friendenberg ZB, Dyer R, and, Brighton CT, J Dent Res 50 (1971) 635.CrossRefGoogle Scholar
  11. 11.
    Hastings GW, and Mahmud FA, J Biomed Eng 10 (1988) 515.CrossRefGoogle Scholar
  12. 12.
    Isaacson Brad M, and, Bloebaum Roy D, J Biomed Mater Res Part A 95A (2010) 1270.CrossRefGoogle Scholar
  13. 13.
    England TS, and Sharples NA, Nature 163 (1949) 487.CrossRefGoogle Scholar
  14. 14.
    England TS, Nature 166 (1950) 80.Google Scholar
  15. 15.
    Cook HF, Br J Appl Phys 2 (1951) 292.CrossRefGoogle Scholar
  16. 16.
    Singh S, and Saha S, Clin Orthop Relat Res 186 (1984) 249.Google Scholar
  17. 17.
    Shames MH, and Lavine LS, Clin Othop 355 (1964) 177.Google Scholar
  18. 18.
    Behari J, Kumar H, and Aruna R, Ann Biomed Eng 10 (1982) 139.CrossRefGoogle Scholar
  19. 19.
    Reddy GN, and Saha S, IEEE Trans Biomed Eng. BME 31 (3) (1984) 296.CrossRefGoogle Scholar
  20. 20.
    Shtraus VD, and Pfafrod GO, Mech Compos Mater 17 (1981) 716-720.CrossRefGoogle Scholar
  21. 21.
    Reinish GB, and Nowick AS, J Electrochem Soc 123 (1976) 1451.CrossRefGoogle Scholar
  22. 22.
    Yasuda I, J Japanese Orthop Surg Soc 28 (3) (1954) 267.Google Scholar
  23. 23.
    Fukada E, and Yasuda I, J Phys Soc Jap 12 (1957) 1158.CrossRefGoogle Scholar
  24. 24.
    Hastings GW, and Mahmud FA, J Biomed Eng 10 (1988) 515.CrossRefGoogle Scholar
  25. 25.
    Meyers M A, Chen P Y, Lin A Y M, Seki Y, Prog Mater Sci 53 (2008) 1.CrossRefGoogle Scholar
  26. 26.
    Fukada E, Yasuda, I, Jpn J App Phys 3 (1964) 117.CrossRefGoogle Scholar
  27. 27.
    Moss ML, Am J Orthod Dentofacial Orthop 112 (1997) 8.CrossRefGoogle Scholar
  28. 28.
    Lang SB, Nature 212 (1966) 704.CrossRefGoogle Scholar
  29. 29.
    Athenstaedt H, Z Zelljorsch Mirkrosk Anat 97 (1969) 537.CrossRefGoogle Scholar
  30. 30.
    Lang SB, Ferroelectrics. 34 (1981) 3.CrossRefGoogle Scholar
  31. 31.
    EI Messiery MA, Hastings GW, and Rakawski S, J Biomed Eng 1 (1979) 63.CrossRefGoogle Scholar
  32. 32.
    Hastings GW, El Messiery MA, and Rakowski S, Biomater 2 (1981) 225.CrossRefGoogle Scholar
  33. 33.
    Liu Y G, Jia D C, Zhou Y, Fang M H, and Huang Z H, Ceram Int 37 (2011) 647.CrossRefGoogle Scholar
  34. 34.
    Narayanan R, Seshadri S K, Kwon T Y, and Kim K H, J Biomed Mater Res B Appl Biomater 85 (2008) 279.CrossRefGoogle Scholar
  35. 35.
    Li H, Khor KA, Cheang P, Biomater 24 (2003) 949.CrossRefGoogle Scholar
  36. 36.
    Li H Khor, KA Cheang P, and Biomater 23 (2002) 85.Google Scholar
  37. 37.
    Coreno J, and Coreno O, J Biomed Mater Res A 57 (2005) 478.CrossRefGoogle Scholar
  38. 38.
    Calixto de Andrade M, Tavares Filgueiras MR, and, Ogasawara T, J Biomed Mater Res. 46 (1999) 441.Google Scholar
  39. 39.
    Takadama H, Kim HM, Kokubo T, and, Nakamura T, J Biomed Mater Res. 57 (2001) 441.CrossRefGoogle Scholar
  40. 40.
    Takadama H, Kim HM, Kokubo T, and, Nakamura T, Sci Technol Adv Mater 2 (2001) 389.CrossRefGoogle Scholar
  41. 41.
    Kaciulis S, Mattogno G, Pandolfi L, Cavalli M, Gnappi G, and Montenero A, Appl Surf Sci 151 (1999) 1.CrossRefGoogle Scholar
  42. 42.
    Manso M, Langlet M, and, Martinez-Duart JM, Mater Sci Eng C 23 (2003) 447.CrossRefGoogle Scholar
  43. 43.
    Wiff JP, Fuenzalida VM, Arias JL, and Fernandez MS, Mater Lett 61 (2007)2739.CrossRefGoogle Scholar
  44. 44.
    Wei D, Zhou Y, Jia D, and, Wang Y, J Biomed Mater Res Part B Appl Biomater 84B (2008) 444.CrossRefGoogle Scholar
  45. 45.
    Webster TJ, Ergun C, Doremus RH, and Lanford WA. J Biomed Mater Res 67A (2003) 975.CrossRefGoogle Scholar
  46. 46.
    Ergun C, Liu H, Halloran JW, and, Webster TJ, J Biomed Mater Res 80A (2007) 990.CrossRefGoogle Scholar
  47. 47.
    Dubey AK, Tripathi G, and Basu B, J Biomed Mater Res Part B Appl Biomater 95B (2010) 320.Google Scholar
  48. 48.
    Ravikumar K, Boda S K, and, Basu B, Bioelectrochemistry 116 (2017) 52.CrossRefGoogle Scholar
  49. 49.
    Teng NC, Nakamura S, Takagi Y, Yamashita Y, Ohgaki M, and Yamashita K J Dent Res 80 (2001) 1925.CrossRefGoogle Scholar
  50. 50.
    Ravalioli A and Kraiewski A Bioceramics: Materials-Properties-Applications London Chapman & Hall (1992).Google Scholar
  51. 51.
    Yang W, and Liu Z Biomedical Engineering TJST Tianjin (1993).Google Scholar
  52. 52.
    Jianqing F, Huipin Y, and Xingdong Z P Biomater 18 (1997) 1531.Google Scholar
  53. 53.
    Chen XM, and Yang B Mater Lett 33 (1997) 237.Google Scholar
  54. 54.
    Yang B, and Chen XM J Eur Ceram Soc 20 (2000) 1687.CrossRefGoogle Scholar
  55. 55.
    Rattanachan S, Miyashita Y, and Mutoh Y, Fract Mech Ceram 14 (2005) 297.CrossRefGoogle Scholar
  56. 56.
    Okazaki K, Bull Am Ceram Soc. 63 (1984)1150.Google Scholar
  57. 57.
    Pisarenko GG, Chushko VM, and Kovalev SP, J Am Ceram Soc. 68 (1985) 259.CrossRefGoogle Scholar
  58. 58.
    Rattanachan S, Miyashita Y, and Mutoh Y, J Eur Ceram Soc 24 (2004) 775.CrossRefGoogle Scholar
  59. 59.
    Rattanachan S, Miyashita Y, and Mutoh Y, J Eur Ceram Soc 23 (2003) 1269.CrossRefGoogle Scholar
  60. 60.
    Zhan GD, Kuntz J, Wan J, Garay J, and Mukherjee AK, Mater Sc Eng A356 (2003) 443.CrossRefGoogle Scholar
  61. 61.
    Mehta K, and Virkar AV, J Am Ceram Soc 73 (1990) 567.CrossRefGoogle Scholar
  62. 62.
    Wang H, and Singh RN, Ferroelectrics 207 (1998) 555.CrossRefGoogle Scholar
  63. 63.
    Dubey AK, Basu B, Balani K, Guo R, and Bhalla AS, Int Ferroelectr 131 (2011) 119.CrossRefGoogle Scholar
  64. 64.
    Dubey AK, Basu B, Balani K, Guo R, and Bhalla, Ferroelectrics. 423 (2011) 63.CrossRefGoogle Scholar
  65. 65.
    Reddy S, Dubey AK, Basu B, Guo R and Bhalla AS, Int Ferroelectr 131 (2011) 147.CrossRefGoogle Scholar
  66. 66.
    Park JB, Kenner GH, Brown SD, and Scott JK, Artif Cell Blood Sub 5 (1977) 267.Google Scholar
  67. 67.
    Park JB, von Recum AF, Kenner GH, Kelly BJ, Coffeen WW, and Grether MF, J Biomed Mater Res 14 (1980) 269.CrossRefGoogle Scholar
  68. 68.
    Park JB, Kelly BJ, Kenner GH, von Recum AF, Grether MF, and Coffeen WW, J Biomed Mater Res 15 (1981)103.CrossRefGoogle Scholar
  69. 69.
    Park YJ, Hwang KS, Song JE, Ong JL, and Rawls HR, Biomater 23 (2002) 3859.CrossRefGoogle Scholar
  70. 70.
    Hwang KS, Song JE, Yang HS, Park YJ, Ong JL, and Rawls HR, J Mater Sci Mater Med 13 (2002) 133.CrossRefGoogle Scholar
  71. 71.
    Ferreira AM, Noris-Suarez K, Lira-Olivares J, Feijoo JL, and Gonzalez G, Acta Microsc. 16 (2007) 122.Google Scholar
  72. 72.
    Hoepfner TP, and Case ED, J Biomed Mater Res 60 (2002) 643.CrossRefGoogle Scholar
  73. 73.
    More N, and Kapusetti G, Med Hypotheses 108 (2017) 10.CrossRefGoogle Scholar
  74. 74.
    Ramadan Khaled S, Sameoto D, and Evoy S, Smart Mater Struct 23 (2014) 033001.CrossRefGoogle Scholar
  75. 75.
    Harrison JS, and Ounaies Z Piezoelectric polymers Encyclopedia of Polymer Science and Technology, Wiley, New York (2002) 474.Google Scholar
  76. 76.
    Kenji O, Hiroji O, and Keiko K, J Appl Phys 81(1997) 760.Google Scholar
  77. 77.
    Federico C, Rossi DD, Kornbluh R, Pelrine RE, and Sommer-Larsen P, eds Dielectric Elastomers as Electromechanical Transducers Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier, Amsterdam (2011).Google Scholar
  78. 78.
    Federico C, and Smela E, eds Biomedical Applications of Electroactive Polymer Actuators. Wiley, Hoboken (2009).Google Scholar
  79. 79.
    Clarisse R, Sencadas V, Correia DM, and Lanceros-Méndez S, Coll Surf B Biointerfaces 136 (2015) 46.CrossRefGoogle Scholar
  80. 80.
    João G, Serrado J, Nunes V, Sencadas, and Lanceros-Méndez S, Smart Mater Struct 19 (2010) 065010.CrossRefGoogle Scholar
  81. 81.
    Guo HF, Li ZS, Dong SW, Chen WJ, Deng L, Wang YF, and Ying DJ, Coll Surf B: Biointerfaces 96 (2012) 29.CrossRefGoogle Scholar
  82. 82.
    Ribeiro C, Pärssinen J, Sencadas V, Correia V, Miettinen S, Hytönen VP, and, Lanceros-Méndez S, J Biomed Mater Res A 103 (2015) 2172.CrossRefGoogle Scholar
  83. 83.
    Martins P M, Ribeiro S, Clarisse Ribeiro, Vitor Sencadas,. Gomes A C, Gama F M, and Senentxu Lanceros-Méndez. RSC Adv 3 (2013) 17938.CrossRefGoogle Scholar
  84. 84.
    Ravikumar K, Kar G P, Bose, S, and Basu B, RSC Adv (2016) 10837.CrossRefGoogle Scholar
  85. 85.
    Beloti MM, de Oliveira PT, Gimenes R, Zaghete MA, Bertolini MJ and Rosa AL, J Biomed Mater Res 79A (2006) 282.CrossRefGoogle Scholar
  86. 86.
    Baxter F R, Turner I G, Bowen C R, Gittings J P, Chaudhuri J B, J Mater Sci Mater Med 20 (2009)1697.CrossRefGoogle Scholar
  87. 87.
    Itoh S, Nakamura S, Nakamura M, Shinomiyaa K, Yamashita K, Biomater. 27 (2006) 5572.CrossRefGoogle Scholar
  88. 88.
    Jacob J, More N, Kalia K and Kapusetti G, Inflamm Regen 38 (2018) 2.CrossRefGoogle Scholar
  89. 89.
    Nilsson K, Lidman J, Ljungstrom K, Kjellman C. Biocompatible material for implants, U.S. patent 6 (2003) 526 984 B1.Google Scholar
  90. 90.
    Chen W, Yu Z, Pang J, Yu P, Tan G and Ning C, Materials 10 (2017) 345.CrossRefGoogle Scholar
  91. 91.
    Yu P, Ning C, Zhang Y, Tan G, Lin Z, Liu S, Wang X, Yang H, Li K, Yi X, Zhu Y, Mao C.. Theranostics 7(13) (2017) 3387.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Ashutosh Kumar Dubey
    • 1
  • K. Ravikumar
    • 2
  • Bikramjit Basu
    • 2
    Email author
  1. 1.Department of Ceramic EngineeringIndian Institute of Technology (BHU)VaranasiIndia
  2. 2.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations