Metals Extraction from Sulfide Ores with Microorganisms: The Bioleaching Technology and Recent Developments

  • Wasim SajjadEmail author
  • Guodong Zheng
  • Ghufranud Din
  • Xiangxian Ma
  • Muhammad Rafiq
  • Wang Xu
Review Paper


Nowadays, due to fast global industrial progress and near diminution of high-grade ore reserves, there has been massive call to cost-effectively process the resources of low-grade ores and industrial effluents for metal extraction. However, conventional approaches cannot be used to process such resources due to high capital cost and energy, also causing environmental pollution. Alternatively, bioleaching is highly environmental friendly and economic method to process such resources. Metal recovery from metal sulfide ore is carried out by chemolithotrophic bacteria like Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The same is done by heterotrophic microorganisms in non-sulfide ores. Additionally, for gold and copper extractions, bioleaching is used to extract cobalt, zinc, nickel, and uranium from low-grade ores and industrial effluents. In this review, the fundamental process of bioleaching from low-grade metal sulfide ores are discussed with emphasis on mechanism, types, pathways, techniques, and bioleaching development.


Acidithiobacillus ferrooxidans bioleaching Iron-oxidizing bacteria Pyrite Acid mine drainage 



This work was sponsored by CAS-TWAS President’s Fellowship for international Ph.D. students to WS and partially by the Natural Science Foundation of China (41572352).

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest.


  1. 1.
    Acevedo F, Electron J Biotechnol 3 (2000) 1.CrossRefGoogle Scholar
  2. 2.
    Agate A D, World J Microbiol Biotechnol 12 (1996) 487.CrossRefGoogle Scholar
  3. 3.
    Ahmadi A, Schaffie M Z M and Ranjbar M, Hydrometallurgy 104 (2010) 99.CrossRefGoogle Scholar
  4. 4.
    Ahoranta S H, Peltola M K, Lakaniemi A M and Puhakka J A, Hydrometallurgy 167 (2017) 163.CrossRefGoogle Scholar
  5. 5.
    Aishvarya V, Mishra G, Pradhan N. and Ghosh M K, Hydrometallurgy 166 (2016) 130.CrossRefGoogle Scholar
  6. 6.
    Akcil A and Deveci H, in Geomicrobiology, (ed) Jain S, Khan A, Rai M K (eds), Science Publishers, Enfield (2010) p 101.CrossRefGoogle Scholar
  7. 7.
    Anjum F, Bhatti H N and Ambreen A, Asian J Chem 7 (2009a) 5251.Google Scholar
  8. 8.
    Anjum F, Bhatti H N, Asgher M and Shahid M, J Appl Clay Sci 34 (2010a) 356.CrossRefGoogle Scholar
  9. 9.
    Anjum F, Bhatti H N, Ghauri M A, Bhatti I A, Asgher M and Asi M R, Afr J Biotechnol 8 (2009) 5038.Google Scholar
  10. 10.
    Anjum F, Shahid M and Akcil A, Hydrometallurgy, 117 (2012) 1.CrossRefGoogle Scholar
  11. 11.
    Apel A W and Dugan R P, in Hydrogen Ion Utilization by Iron Grown Thiobacillus ferrooxidans: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, (eds). Murr E L, Torma A E, Brierley A J, Academic Press, New York (1978) 45.CrossRefGoogle Scholar
  12. 12.
    Aslam K M and Aslam M, Nucleus (Karachi) 7 1970 28–36.Google Scholar
  13. 13.
    Attia Y A, Elzeky M and Ismail M Int J Miner Process 37 (1993) 61.CrossRefGoogle Scholar
  14. 14.
    Babel S and Del Mundo Dacera D Waste Manag 26 (2006) 988.CrossRefGoogle Scholar
  15. 15.
    Babij T and Madgwick J C, Proc Aust Inst Min Met 287 1993 61.Google Scholar
  16. 16.
    Balci N, Mayer B, Shanks W C and Mandernack K W Geochimica et Cosmochimica Acta, 77 (2012) 335.CrossRefGoogle Scholar
  17. 17.
    Balci N, Shanks W C, Mayer B and Mandernack K W, Geochimica et Cosmochimica Acta 71 (2007) 3796.CrossRefGoogle Scholar
  18. 18.
    Bell J M, Philp J C, Kuyukina M S, Ivshina I B, Dunbar S A, Cunningham C J and Anderson P (2004) J Microbiol Methods 58 (2007) 87.CrossRefGoogle Scholar
  19. 19.
    Bevilaqua D, Lahti H, Suegama P H, Garcia Jr. O, Benedetti A V, Puhakka J A and Tuovinen O H, Hydrometallurgy 138 (2013) 1.CrossRefGoogle Scholar
  20. 20.
    Bhattacharya S, Das A, Chakrabarti B K and Banerjee P C, Folia Microbiologica 37 (1992) 169.CrossRefGoogle Scholar
  21. 21.
    Bonnefoy V and Holmes D Environ Microbiol 14 (2012) 1597.CrossRefGoogle Scholar
  22. 22.
    Brandl H, in Biotechnology Set, 2nd ed. (eds) Rehm H J, Reed G Wiley-VCH Verlag GmbH, Weinheim (2001) p 191.Google Scholar
  23. 23.
    Brierley C and Brierley J, Appl Microbiol Biotechnol 97 (2013) 7543.CrossRefGoogle Scholar
  24. 24.
    Brierley C L and Briggs A P in Mineral Processing Plant Design, Practice and Control Proceedings (eds) Mular A L, Halbe D N, Barret D J, Society of Mining Engineers, Littleton (2002) p 1540.Google Scholar
  25. 25.
    Brierley C L Trans Nonferr Met Soc China 18 (2008) 1302.CrossRefGoogle Scholar
  26. 26.
    Brierley C L Hydrometallurgy 104 (2010) 324.CrossRefGoogle Scholar
  27. 27.
    Brune K D and Bayer T S Front Microbiol 3 (2012) 203.Google Scholar
  28. 28.
    Bruynesteyn A, in Proceedings of the 6th Annual Uranium Seminar. SME-AIME, New York (1983) p 59.Google Scholar
  29. 29.
    Burford E P, Fomina M and Gadd G M, Mineral Mag 67 (2003) 1127.CrossRefGoogle Scholar
  30. 30.
    Chaerun S K, Alting S A, Mubarok M Z and Sanwani E, in E3S Web of Conferences, 8 (2016) 01029.Google Scholar
  31. 31.
    Charikinya E and Bradshaw S M Hydrometallurgy 173 (2017) 106.CrossRefGoogle Scholar
  32. 32.
    Chen H P, Zhou L X, Wang S M and Liang J R, Huan Jing Ke Xue = Huanjing Kexue 30 (2009) 3364.Google Scholar
  33. 33.
    Chen L, Li-nan H, Celia M, Jia-liang K, Zheng-shuang H, Jun L and Wen-sheng S, Curr Opin Biotechnol 38 (2016) 150.CrossRefGoogle Scholar
  34. 34.
    Clark M E, Batty J D, van Buuren C B, Dew D W and Eamon M A Hydrometallurgy 83 (2006) 3.CrossRefGoogle Scholar
  35. 35.
    Colmer A R and Hinkle M E, Science 106 (1947) 253.CrossRefGoogle Scholar
  36. 36.
    Das A P, Sukla L B, Pradhan N and Nayak S, Bioresour Technol 102 (2011) 7381.CrossRefGoogle Scholar
  37. 37.
    Devasia P and Natarajan K A, General Article Resonance (2004)27.Google Scholar
  38. 38.
    Dhawan N, Safarzadeh M S, Miller J D, Moats M S, Rajamani R K and Lin C L, Miner Eng 35 (2012) 75.CrossRefGoogle Scholar
  39. 39.
    Diao M, Taran E, Mahler S and Nguyen A V, Adv Colloid Interface Sci 212 (2014) 45.CrossRefGoogle Scholar
  40. 40.
    Diaz M A, De Ranson I U, Dorta B, Banat I M, Blazquez M L, Gonzalez F, Muñoz J A and Ballester A, Soil Sedim Contamin Int J 24 (2015) 16.CrossRefGoogle Scholar
  41. 41.
    Druschel G, Borda M. Geochimica et Cosmochimica Acta, 70 (2006) 5246.Google Scholar
  42. 42.
    du Plessis C A, Batty J D and Dew D W, in (eds) Rawlings D E, Johnson D B, Biomining. Springer, Berlin.Google Scholar
  43. 43.
    Elzeky M and Attia Y A, Chem Eng J Biochem Eng J 56 (1995) B115.CrossRefGoogle Scholar
  44. 44.
    Escobar B and Lazo D (2003) Hydrometallurgy 71 (2003) 173.CrossRefGoogle Scholar
  45. 45.
    Falagán C, Grail B M, and Johnson D B, Miner Eng 106 (2017) 71.CrossRefGoogle Scholar
  46. 46.
    Feng S, Yang H, Xin Y, Gao K, Yang J, Liu T. and Wang W, Bioresource Technol 129 (2013) 456.CrossRefGoogle Scholar
  47. 47.
    Feng S, Yang H, Xin Y, Gao K, Yang J, Liu T, Zhang L and Wang W, Bioresource Technol 129 (2013) 456.CrossRefGoogle Scholar
  48. 48.
    Fu B, Zhou H, Zhang R and Qiu G, Int Biodeter Biodegrad 62 (2008) 109.CrossRefGoogle Scholar
  49. 49.
    Gadd G M, New Phytologist 124 (1993) 25.CrossRefGoogle Scholar
  50. 50.
    Gadd G M, Geoderma, 122 (2004) 109.CrossRefGoogle Scholar
  51. 51.
    Gehrke T, Telegdi J, Thierry D and Sand W, Appl Environ Microbiol 64 (1998) 2743.Google Scholar
  52. 52.
    Gericke M, Neale J W and Van Staden P J, J Southern Afr Inst Min Metall 109 (2009) 567.Google Scholar
  53. 53.
    Ghassa S, Boruomand Z, Abdollahi H, Moradian M and Akcil A, Sep Purif Technol 136 (2014) 241.CrossRefGoogle Scholar
  54. 54.
    Gong-Xin C, Guan-Chai W, Jin-Hui L, Geochemica et Cosmochimica Acta 74(11).Google Scholar
  55. 55.
    Govender E, Bryanl C G and Harrison S T, Biochem Eng J 95 (2015) 86.CrossRefGoogle Scholar
  56. 56.
    Grewal H S and Kalra K L, Biotechnol Adv 13 (1995) 209.CrossRefGoogle Scholar
  57. 57.
    Grishin S I, Kachelkin A V and Adamov E V et al., in 17th International Mineral Process Congress 5 (1991) 91.Google Scholar
  58. 58.
    Hackl R P, Dreisinger D B, Peters E and King J A, Hydrometallurgy 39 (1995) 25.CrossRefGoogle Scholar
  59. 59.
    Hiroyoshi N, Kitagawa H and Tsunekawa M, Hydrometallurgy 91 (2008) 144.CrossRefGoogle Scholar
  60. 60.
    Hirt W E and Vestal J R, J Bacteriol 123 (1975) 642.Google Scholar
  61. 61.
    Ito A, Takahashi K, Suzuki J and Umita T, J Water Environ Technol 11 (2013) 309.CrossRefGoogle Scholar
  62. 62.
    Johnson D B, FEMS Microbiol Ecol 27 (1998) 307.CrossRefGoogle Scholar
  63. 63.
    Karavaiko G I, in Biogeotechnology of Metals Manual. (Eds) Karavaiko G I, Rossi G, Agate A D, Groudev S N, Avakyan Z A, Centre for International Projects GKNT, Moscow.Google Scholar
  64. 64.
    Khalid A M, Anwar M A, Shernsi A M, Niazi G and Akhtar K, in (Eds) Tonna A E, We y J E, Lahhmanan V I, Biohydrometallurgicd Technologies, i. The Minerais, Metals & Materials Society, Warrendale (1993) p 285.Google Scholar
  65. 65.
    Khan S A, Uddin I, Moeez S and Ahmad A, PloS One, 9 (2014) 107597.CrossRefGoogle Scholar
  66. 66.
    Kumar C G, Mamidyala S K, Sujitha P, Muluka H and Akkenapally S (2012), Biotechnol Prog 28 (2012) 1507.CrossRefGoogle Scholar
  67. 67.
    Latorre M, Cortés M P, Travisany D, Di Genova A, Budinich M, Reyes-Jara A, Hödar C, González M, Parada P, Bobadilla-Fazzini R A and Cambiazo V, Bioresource Technol 218 (2016) 659.CrossRefGoogle Scholar
  68. 68.
    Lau E V, Gan S, Ng H K and Poh P E, Environ Poll 184 (2014) 640.CrossRefGoogle Scholar
  69. 69.
    Le L, Tang J, Ryan D and Valix M, Miner Eng 19 (2006) 1259.CrossRefGoogle Scholar
  70. 70.
    Leahy M J, Davidson M R and Schwarz M P, Anziam J 46 (2005) 439.CrossRefGoogle Scholar
  71. 71.
    Liang C L, Xia J L, Nie Z Y, Yang Y and Mac C Y, Bioresour Technol 110 (2012) 462.CrossRefGoogle Scholar
  72. 72.
    Liang X and Gadd G M, Microbial Biotechnol 10 (2017) 1199.CrossRefGoogle Scholar
  73. 73.
    Liu M S, Branion R M R and Duncan D W, in Biohydrometall Proc Int Symp (Eds) Norris P R, Kelly, DP p 375.Google Scholar
  74. 74.
    Liu X R, Zhang H, Yu H L and Zhu Y H, in Solid State Phenomena, Trans Tech Publications, 262 (2017) 75.Google Scholar
  75. 75.
    Lizama H M, Harlamovs J R, Mckay D J and Dai Z, Miner Eng 18 (2005) 623.CrossRefGoogle Scholar
  76. 76.
    Lotfalian M, Ranjbar M, Fazaelipoor M H, Schaffie M and Manafi Z, Miner Eng 81 (2015) 52.CrossRefGoogle Scholar
  77. 77.
    Mac Gregor R A, Trans Inst Min Metall 69 (1966) 162.Google Scholar
  78. 78.
    McGuire M M, Edwards K J, Banfield J F and Hamers R J, Geochimica et Cosmochimica Acta 65 (2001) 1243.CrossRefGoogle Scholar
  79. 79.
    Megaw D, Moolman J, Muzadi P and Marcus T, J Southern Afr Inst Min Metall 117 (2017) 779.CrossRefGoogle Scholar
  80. 80.
    Mehrotra A and Sreekrishnan T R, Environ Technol (2017) 1.Google Scholar
  81. 81.
    Mishra A, Pradhan N, Kar R N, Sukla L B and Mishra B K, Hydrometallurgy 95 (2009) 175.CrossRefGoogle Scholar
  82. 82.
    Mohanty S, Ghosh S, Nayak S and Das A P, Chemosphere 172 (2017) 302.CrossRefGoogle Scholar
  83. 83.
    Morin D, Lips A, Pinches T, Huisman J, Frias C, Norberg A and Forssberg E, Hydrometallurgy 83 (2006) 69.CrossRefGoogle Scholar
  84. 84.
    Munoz J A, Dreisinger D B, Cooper W C and Young S K, Hydrometallurgy 88 (2007) 3.CrossRefGoogle Scholar
  85. 85.
    Murray C, Platzer W and Petersen J, Miner Eng 100 (2017) 75.CrossRefGoogle Scholar
  86. 86.
    Mutch L A, Watling H R and Watkin E L J, Hydrometallurgy 104 (2010) 391.CrossRefGoogle Scholar
  87. 87.
    Natarajan K A, Biotechnol Bioeng 39 (1992) 907.CrossRefGoogle Scholar
  88. 88.
    Norgate T and Jahanshahi S, Miner Eng 23 (2010) 65.CrossRefGoogle Scholar
  89. 89.
    Norgate T E and Jahanshahi S, in Proceedings of the 5th Australian Conference on Life Cycle Assessment, Melbourne, November 2006.Google Scholar
  90. 90.
    Norris P R, Laigle L, Ogden T J and Gould O J, Miner Eng 106 (2017) 7.CrossRefGoogle Scholar
  91. 91.
    Olson G J, (1994) FEMS Microbiol Lett 119 (1994) 1.CrossRefGoogle Scholar
  92. 92.
    Olson G J, Brierley J A and Brierley C L, Appl Microbiol Biotechnol 63 (2003) 249.CrossRefGoogle Scholar
  93. 93.
    Panda S, Akcil A, Mishra S, Erust C, J Hazard Mater 325 (2017) 59.CrossRefGoogle Scholar
  94. 94.
    Panda S, Akcil A, Pradhan N, Deveci H, Bioresour Technol 196 (2015) 694.CrossRefGoogle Scholar
  95. 95.
    Panda S, Biswal A, Mishra S, Panda P K, Pradhan N, Mohapatra U, Sukla L B, Mishra B K and Akcil A, Hydrometallurgy 153 (2015) 98.CrossRefGoogle Scholar
  96. 96.
    Panda S, Mishra S, Rao D S, Pradhan N, Mohapatra U, Angadi S and Mishra B K, Kor J Chem Eng 32 (2015) 667.CrossRefGoogle Scholar
  97. 97.
    Panda S, Parhi P K, Nayak B D, Pradhan N, Mohapatra U B and Sukla L B, Bioresour Technol 130 (2013b) 332.CrossRefGoogle Scholar
  98. 98.
    Panda S, Rout P C, Sarangi C K, Mishra S, Pradhan N, Mohapatra U and Mishra B K, Kor J Chem Eng 31 (2014) 452.CrossRefGoogle Scholar
  99. 99.
    Panda S, Sanjay K, Sukla L B, Pradhan N, Subbaiah T, Mishra B K and Ray S K, Hydrometallurgy 125 (2012) 157.CrossRefGoogle Scholar
  100. 100.
    Pandey B D and Natarajan K A (Eds) (2015) Microbiology for Minerals, Metals, Materials and the Environment, CRC Press.Google Scholar
  101. 101.
    Parida B K, Panda S, Misra N, Panda P K and Mishra B K, Geomicrobiology 31(4) (2014) 299.CrossRefGoogle Scholar
  102. 102.
    Peng G, Tian G, Liu J, Bao Q and Zang L, Desalination 271 (2011) 100.CrossRefGoogle Scholar
  103. 103.
    Pesic B and Kim I, Metall Mater Trans B 24 (1993) 717.CrossRefGoogle Scholar
  104. 104.
    Petersen J and Dixon D G, Miner Eng 15 (2002) 758.CrossRefGoogle Scholar
  105. 105.
    Pirollo M P, Mariano A P, Lovaglio R B, Costa S G, Walter V, Hausmann R and Contiero J, J Appl Microbiol 105 (2008) 1484.CrossRefGoogle Scholar
  106. 106.
    Pradhan N, Nathsarma K C, Rao K S, Sukla L B and Mishra B K, Miner Eng 21 (2008) 355.CrossRefGoogle Scholar
  107. 107.
    Qin W, Yang C, Lai S, Wang J, Liu K and Zhang B, Bioresour Technol 129 (2013) 200.CrossRefGoogle Scholar
  108. 108.
    Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M and Sun L, Bioresour Technol 102 (2011) 4697.CrossRefGoogle Scholar
  109. 109.
    Ralph B J, Compr Biotechnol 4 (1985) 201.Google Scholar
  110. 110.
    Rasoulnia P, Mousavi S M, Rastegar S O and Azargoshasb H, Waste Manag 52 (2016) 309.CrossRefGoogle Scholar
  111. 111.
    Rawlings, D. E., Ann Rev Microbiol 56 (2002) 65.CrossRefGoogle Scholar
  112. 112.
    Rawlings D E, Pretrins I M and Woods D R Biotechnol Bioeng Sympos 16 (1986) 281.Google Scholar
  113. 113.
    Reddy M S, Naresh B, Leela T, Prashanthi M, Madhusudhan N C, Dhanasri G and Devi P, Bioresource Technol 101 (2010) 7980.CrossRefGoogle Scholar
  114. 114.
    Rohwerder T, Gehrke T, Kinzler K and Sand W, Appl Microbiol Biotechnol 63 (2003) 239.CrossRefGoogle Scholar
  115. 115.
    Rojas C, Gutierrez R M and Bruns M A. Appl Soil Ecol 105 (2016) 57.CrossRefGoogle Scholar
  116. 116.
    Rojas-Chapana J A and Tributsch H, FEMS Microbiol Ecology 47 (2004) 19.CrossRefGoogle Scholar
  117. 117.
    Rossi G, Biohydrometallurgy. McGraw-Hill, Hamburg.Google Scholar
  118. 118.
    Rossi G, Fuel 72 (1993) 1581.CrossRefGoogle Scholar
  119. 119.
    Ruan R, Liu X, Zou G, Chen J, Wen J and Wang D, Hydrometallurgy 108 (2011) 130.CrossRefGoogle Scholar
  120. 120.
    Saitoh N, Nomura T and Konishi Y, in Solid State Phenomena, Trans Tech Publications, 262 (2017) 237.Google Scholar
  121. 121.
    Sajjad W, Bhatti T M, Hasan F and Shah A A, Int J Biosci 6 (2015) 62.CrossRefGoogle Scholar
  122. 122.
    Sajjad W, Bhatti T M, Hasan F, Khan S, Badshah M, Naseem A A and Shah A A. Pak J Bot 48 (2016) 1253.Google Scholar
  123. 123.
    Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Ali B, Rafiq M, Geomicrobiology 35 (2018a) 580.CrossRefGoogle Scholar
  124. 124.
    Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Khan S, Extremophile 22 (2018b) 851.CrossRefGoogle Scholar
  125. 125.
    Sand W, Gehrke T and Hallmann R, Appl Microbiol Biotechnol 43 (1995) 961.CrossRefGoogle Scholar
  126. 126.
    Sand W, Gehrke T, Jozsa P G and Schippers A, Hydrometallurgy 59 (2001) 159.CrossRefGoogle Scholar
  127. 127.
    Schippers A, Hedrich S, Vasters J, Drobe M, Sand W and Willscher S, Adv Biochem Eng Biotechnol 141 (2014) 1.Google Scholar
  128. 128.
    Schippers A and Sand W, Appl Environ Microbiol 65 (1999) 319.Google Scholar
  129. 129.
    Schippers A, in (Eds) Amend J P, Edwards K J, Lyons T W, Sulfur Biogeochemistry: Past and Present. Special paper 379. Geological Society of America, Boulder.Google Scholar
  130. 130.
    Schippers A, in Microbial Processing of Metal Sulfides (2007) p 3.Google Scholar
  131. 131.
    Schippers A, in Solid State Phenomena, Trans Tech Publications, 262, p 61.Google Scholar
  132. 132.
    Schippers A, Hedrich S, Vasters J, Drobe M, Sand W and Willscher S, in Geobiotechnology, Springer, Berlin (2013) p 1.Google Scholar
  133. 133.
    Schippers A, Jozsa P and Sand W, Appl Environ Microbiol 62 (1996) 3424.Google Scholar
  134. 134.
    Sethurajan M, Lens P N, Rene E R, Van de Vossenberg J, Huguenot D, Horn H A and Van Hullebusch E D, J Chem Technol Biotechnol 92 (2017) 512.CrossRefGoogle Scholar
  135. 135.
    Silverman M P, J Bacteriol 94 (1967) 1046.Google Scholar
  136. 136.
    Silverman M P, Rogoff M H and Wender I, Appl Microbiol 9 (1961) 491.Google Scholar
  137. 137.
    Singer P C and Stumm W, Science 167 (1970) 1121.CrossRefGoogle Scholar
  138. 138.
    Smart R S C, Jasieniak M, Prince K E and Skinner W M, Miner Eng 13 (2000) 857.CrossRefGoogle Scholar
  139. 139.
    Steudel R, Ind Eng Chem Res 35 (1996) 1417.CrossRefGoogle Scholar
  140. 140.
    Sugio T, Domatsu C, Munakata O, Tano T and Imai K, Appl Environ Microbiol 49 (1985) 1401.Google Scholar
  141. 141.
    Szubert A, Łupiński M and Sadowski Z, Physicochem Problems Miner Process 40 (2006) 211.Google Scholar
  142. 142.
    Tang J, He J, Liu T, Xin X and Hu H, Chemosphere 189 (2017) 599.CrossRefGoogle Scholar
  143. 143.
    Temple K L and Colmer A R, J Bacteriol 62 (1951) 605.Google Scholar
  144. 144.
    Thomas J E, Skinner W M, and Smart R S C, Geochimica et Cosmochimica Acta 65 (2001) 1.CrossRefGoogle Scholar
  145. 145.
    Torma A E and Olsen T M Appl Biochem Biotechnol 18 (1988) 341.CrossRefGoogle Scholar
  146. 146.
    Torma A E, Revue Canadienne de Biologie 30 (1971) 209.Google Scholar
  147. 147.
    Torma A E, Walden C C, Duncan D W and Branion R M R, Biotechnol Bioeng 14 (1972) 777.CrossRefGoogle Scholar
  148. 148.
    US Patent No. 6110253 (2000) High Temperature Heap Bioleaching Process.Google Scholar
  149. 149.
    Vainshtein M, Abashina T, Bykov A, Repina A and Kaparullina E, World J Microbiol Biotechnol 31 (2015) 535.CrossRefGoogle Scholar
  150. 150.
    Valix M and Loon L O, Miner Eng 16 (2003) 193.CrossRefGoogle Scholar
  151. 151.
    Vaughan D J and Craig J R, Mineral Chemistry of Metal Sulphides. Cambridge University Press, Cambridge.Google Scholar
  152. 152.
    Vera M, Schippers A and Sand W, Appl Microbiol Biotechnol 97 (2013) 7529.CrossRefGoogle Scholar
  153. 153.
    Von Wahl S, Bergwirtschaft Band I. Verlag Glückauf, Essen (1990).Google Scholar
  154. 154.
    Wang J and Chen C, Biotechnol Adv 27 (2009) 195.CrossRefGoogle Scholar
  155. 155.
    Wichlacz P C, Unz R F and Langworthy T A, Int J Syst Bacteriol 36 (1986) 197.CrossRefGoogle Scholar
  156. 156.
    Wu B, Wen J K, Chen B W, Yao G C and Wang D Z, Rare Met 33 (2014) 622.CrossRefGoogle Scholar
  157. 157.
    Xu T J, Ramanathan T and Ting Y P, Biotechnol Rep 3 (2014) 8.CrossRefGoogle Scholar
  158. 158.
    Xu Y and Schoonen M A, Am Mineral 85 (2000) 543.CrossRefGoogle Scholar
  159. 159.
    Xu Y, Zhang C, Zhao M, Rong H, Zhang K and Chen Q, (2017)Chemosphere 168 (2017) 1152.CrossRefGoogle Scholar
  160. 160.
    Yang Z, Zhang Z, Chai L, Wang Y, Liu Y and Xiao R, J Hazard Mater 301 (2016) 145.CrossRefGoogle Scholar
  161. 161.
    Yu H, Liu X, Shen J and Chi D, in AIP Conference Proceedings, AIP Publishing 1820 (2017) 030006.Google Scholar
  162. 162.
    Yu R, Shi L, Gu G, Zhou D, You L, Chen M and Zeng W, Bioresour Technol 162 (2014) 300.CrossRefGoogle Scholar
  163. 163.
    Yuehua H, Guanzhou Q, Jun W, and Dianzuo W, Hydrometallurgy 64 (2002) 81.CrossRefGoogle Scholar
  164. 164.
    Zammit C M, Mangold S, Jonna V R, Mutch L A, Watling H R, Dopsonm M and Watkin E L J, Appl Microbiol Biotechnol 93 (2012) 319.CrossRefGoogle Scholar
  165. 165.
    Zeng J, Gou M, Tang Y Q, Li G Y, Sun Z Y and Kida K, Bioresour Technol 218 (2016) 859.CrossRefGoogle Scholar
  166. 166.
    Zeng W, Qiu G, Zhou H, Peng J, Chen M, Tan S N and Zhang Y, Bioresour Technol 101 (2010) 7068.CrossRefGoogle Scholar
  167. 167.
    Zeng X, Twardowska I, Wei S, Sun L, Wang J, Zhu J and Cai J, J Hazard Mater 288 (2015) 51.CrossRefGoogle Scholar
  168. 168.
    Zhang R Y, Hedrich S and Schippers A, in Solid State Phenomena, Trans Tech Publications 262,(2017) p 88.Google Scholar
  169. 169.
    Zhou H B, Zeng W M, Yang Z F, Xie Y J and Qiu G Z, Bioresour Technol 100 (2009) 515.CrossRefGoogle Scholar
  170. 170.
    Zhu W, Xia J L, Yang Y, Nie Z Y, Zheng L, Ma C Y and Qiu G Z, Bioresour Technol 102 (2011) 3877.CrossRefGoogle Scholar
  171. 171.
    Zhu Y, Zeng G, Zhang P, Zhang C, Ren M, Zhang J, and Chen M, Bioresour Technol 142 (2013) 530.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Wasim Sajjad
    • 1
    • 2
    Email author
  • Guodong Zheng
    • 1
  • Ghufranud Din
    • 3
  • Xiangxian Ma
    • 1
  • Muhammad Rafiq
    • 3
  • Wang Xu
    • 1
    • 2
  1. 1.Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and GeophysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Microbiology, Faculty of Biological SciencesQuaid-I-Azam UniversityIslamabadPakistan

Personalised recommendations