Advertisement

Chloride Removal from Industrial Soils and Zinc Slag in Zinc Production Factories by Sodium Metabisulfite and Copper(II) Sulfate

  • Arezoo RahmaniEmail author
  • Davood Moradkhani
  • Elahe Karami
  • Abasat Rahmani
  • Seyed Kamal Mousavinezhad
Technical Paper
  • 9 Downloads

Abstract

The present study attempts to investigate the chloride removal from industrial soils and zinc slag in zinc production companies. The presence of chloride in factory’s samples causes some problems such as the anode erosion in electrolysis cells, negative effects on the quality of zinc sheets, and reducing the quality of product. Having said that, decreasing the amount of chloride ion will make it possible to produce zinc sheets with SHG quality. There are different methods that can be used to decrease the amount of chloride ion, and one of them has been practiced in this study. A hydrometallurgy method uses sodium metabisulfite and copper(II) sulfate in which Cl reacts with Cu+ to form CuCl precipitate and removes the chloride content. The parameters pH, temperature, time, and the consumed ratio of copper(II) sulfate to sodium metabisulfite were investigated. Once optimal values of these parameters were calculated, the efficiency of chloride removal from NaCl solution with a value of 57% and the obtained solution from slag leach with a value of 2.6% were evaluated as inefficient.

Keywords

Chloride removal Industrial soils and zinc slag Hydrometallurgy method 

References

  1. 1.
    Wu X, Liu Z, and Liu X, Hydrometallurgy, 134 (2013) 62.CrossRefGoogle Scholar
  2. 2.
    Chen W-S, Shen Y-H, Tsai M-S, and Chang F-C, J Hazard Mater 190 (2011) 639.CrossRefGoogle Scholar
  3. 3.
    Kameda T, Yoshioka T, Hoshi T, Uchida M, and Okuwaki A, Sep Purif Technol 42 (2005) 25.CrossRefGoogle Scholar
  4. 4.
    Ito R, Fujita T, Sadaki J, Matsumoto Y, and Ahn J-W, Int J Soc Mater Eng Resour 13 (2006) 70.CrossRefGoogle Scholar
  5. 5.
    Kameda T, Yoshioka T, Mitsuhashi T, Uchida M, and Okuwaki A, Water Res 37 (2003) 4045.CrossRefGoogle Scholar
  6. 6.
    Boghetich G, Liberti L, Notarnicola M, Palma M, and Petruzzelli D, Waste Manag Res 23 (2005) 57.CrossRefGoogle Scholar
  7. 7.
    Apte S, Apte S S, Kore V, and Kore S, Univ J Environ Res Technol 1 (2011) 4.Google Scholar
  8. 8.
    Selwyn L S, and Argyropoulos V, Stud Conserv 50 (2005) 81.CrossRefGoogle Scholar
  9. 9.
    Liu W, Zhang R, Liu Z, and Li C, Hydrometallurgy 160 (2016) 147.CrossRefGoogle Scholar
  10. 10.
    Chmielarz A, and Gnot W, Hydrometallurgy 61 (2001) 21.CrossRefGoogle Scholar
  11. 11.
    Hartmann S, Matysek D, Stary M, and Skrobankova H, Inżynieria Miner 16 (2015) 23.Google Scholar
  12. 12.
    Gau S-H, Wu C-W, and Sun C-J, in The 3rd International Conference on Waste Management and Technology, Beijing, China (2008).Google Scholar
  13. 13.
    Ferone C, Colangelo F, Messina F, Santoro L, and Cioffi R, Materials 6 (2013) 3420.CrossRefGoogle Scholar
  14. 14.
    Nzihou A, and Sharrock P, Waste Manag 22 (2002) 235.CrossRefGoogle Scholar
  15. 15.
    Ito R, Dodbiba G, Fujita T, and Ahn J, Waste Manag 28 (2008) 1317.CrossRefGoogle Scholar
  16. 16.
    Toumi A, Francois R, and Alvarado O, Cem Concr Res 37 (2007) 54.CrossRefGoogle Scholar
  17. 17.
    Kameda T, Miyano Y, Yoshioka T, Uchida M, and Okuwaki A, Chem Lett 29 (2000) 1136.CrossRefGoogle Scholar
  18. 18.
    Kameda T, Oba J, and Yoshioka T, Appl Water Sci 7 (2017) 129.CrossRefGoogle Scholar
  19. 19.
    Dąbrowski A, Hubicki Z, Podkościelny P, and Robens E, Chemosphere 56 (2004) 91.CrossRefGoogle Scholar
  20. 20.
    Mustafa S F, in Removal of Chloride from Wastewater by Advanced Softening Process Using Electrochemically Generated Aluminum Hydroxide (2014).Google Scholar
  21. 21.
    Lv L, Sun P, Gu Z, Du H, Pang X, Tao X, Xu R, and Xu L, J Hazard Mater 161 (2009) 1444.CrossRefGoogle Scholar
  22. 22.
    Lv L, He J, Wei M, Evans D, and Duan X, Water Res 40 (2006) 735.CrossRefGoogle Scholar
  23. 23.
    Yang S, Saffarzadeh A, Shimaoka T, and Kawano T, J Hazard Mater 267 (2014) 214.CrossRefGoogle Scholar
  24. 24.
    Orel Z C, Matijević E, and Goia D V, Colloid Polym Sci 281 (2003) 754.CrossRefGoogle Scholar
  25. 25.
    Parker A J, Muir D M, Grimsey E J, and Preston J S, in Obtaining Copper (I) Chloride from Ores with Acetonitrile, (ed) Google Patents (1981).Google Scholar
  26. 26.
    Fritz J J, J Chem Eng Data 27 (1982) 188.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Arezoo Rahmani
    • 1
    • 2
    Email author
  • Davood Moradkhani
    • 2
  • Elahe Karami
    • 3
  • Abasat Rahmani
    • 1
  • Seyed Kamal Mousavinezhad
    • 4
  1. 1.Research and Development Unit of Calcimin CompanyZanjanIran
  2. 2.Faculty of EngineeringUniversity of ZanjanZanjanIran
  3. 3.Faculty of EngineeringImam Khomeini International UniversityQazvinIran
  4. 4.School of Mining EngineeringUniversity of TehranTehranIran

Personalised recommendations