Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 2, pp 475–486 | Cite as

Failure Prediction of Superheater Tubes in Rotary Tube Bending Process Using GTN Damage Model

  • R. SafdarianEmail author
Technical Paper
  • 25 Downloads

Abstract

Superheater tubes are one of the main parts of boilers which are subjected to high temperature and stress. Fracture is one of the main defects which happen during the forming process of these tubes. In the present study, tube rotary draw bending (RDB) process is used for forming of superheater tube. Gurson–Tvergaard–Needleman (GTN) damage model is used for fracture prediction in the numerical simulation of tube RDB. Response surface methodology is coupled with the finite element to identify the GTN parameters. For this purpose, different sets of GTN parameters are used to simulate the uniaxial tensile test in the Abaqus software. Effect of GTN parameters is investigated on the predicted stress–strain curve of the uniaxial tensile test in the numerical simulation. The best-identified GTN parameters are used in the finite element simulation of tube RDB of superheater tube. Results indicate that there is an appropriate agreement between the predicted fracture location of the numerical and experimental sample after RDB.

Keywords

Finite element method Rotary draw bending (RDB) GTN model Response surface methodology Fracture 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yang H, Li H, and Zhan M J Mater Process Technol 210 (2010) 2273. http://dx.doi.org/10.1016/j.jmatprotec.2010.08.021.CrossRefGoogle Scholar
  2. 2.
    Li H, Yang H, Zhang ZY, Li GJ, Liu N, and Welo T J Mater Process Technol 214 (2014) 445. http://dx.doi.org/10.1016/j.jmatprotec.2013.09.027.CrossRefGoogle Scholar
  3. 3.
    Heng L, He Y, Mei Z, Zhichao S, and Ruijie G Int J Mach Tools Manuf 47 (2007) 1164. http://dx.doi.org/10.1016/j.ijmachtools.2006.09.001.CrossRefGoogle Scholar
  4. 4.
    Zhu YX, Liu YL, Li HP, and Yang H Mater Des 47 (2013) 200. http://dx.doi.org/10.1016/j.matdes.2012.12.018.CrossRefGoogle Scholar
  5. 5.
    Zhao GY, Liu YL, Yang H, Lu CH, and Gu RJ Mater Sci Eng A 499 (2009) 257. http://dx.doi.org/10.1016/j.msea.2007.11.127.CrossRefGoogle Scholar
  6. 6.
    Li H, Yang H, Zhan M, and Gu RJ J Mater Process Technol 187–188 (2007) 502. http://dx.doi.org/10.1016/j.jmatprotec.2006.11.100.CrossRefGoogle Scholar
  7. 7.
    Guangjun L, Heng Y, Xudong X, Heng L, and He Y Rare Met Mater Eng 47 (2018) 26.  https://doi.org/10.1016/S1875-5372(18)30066-3.CrossRefGoogle Scholar
  8. 8.
    Zhan M, Wang Y, Yang H, and Long H J Mater Process Technol 236 (2016) 123.  https://doi.org/10.1016/j.jmatprotec.2016.05.008.CrossRefGoogle Scholar
  9. 9.
    Li H, Yang H, Zhan M, and Gu R-J Trans Nonferrous Met Soc China 16 (2006) s613.  https://doi.org/10.1016/S1003-6326(06)60266-5.CrossRefGoogle Scholar
  10. 10.
    Gurson AL Eng Mater Technol 99 (1977) 2.CrossRefGoogle Scholar
  11. 11.
    Slimane A, Bouchouicha B, Benguediab M, and Slimane S-A J Mater Res Technol 4 (2015) 217. http://dx.doi.org/10.1016/j.jmrt.2014.12.011.CrossRefGoogle Scholar
  12. 12.
    Alegre JM, Cuesta II, and Bravo PM Proc Eng 10 (2011) 1007. http://dx.doi.org/10.1016/j.proeng.2011.04.166.CrossRefGoogle Scholar
  13. 13.
    Abendroth M, and Kuna M Comput Mater Sci 28 (2003) 633. http://dx.doi.org/10.1016/j.commatsci.2003.08.031.CrossRefGoogle Scholar
  14. 14.
    Oh C-K, Kim Y-J, Baek J-H, Kim Y-P, and Kim W Int J Mech Sci 49 (2007) 1399. http://dx.doi.org/10.1016/j.ijmecsci.2007.03.008.CrossRefGoogle Scholar
  15. 15.
    Abbasi M, Bagheri B, Ketabchi M, and Haghshenas DF Comput Mater Sci 53 (2012) 368. http://dx.doi.org/10.1016/j.commatsci.2011.08.020.CrossRefGoogle Scholar
  16. 16.
    He M, Li F, and Wang Z Chin J Aeronaut 24 (2011) 378. http://dx.doi.org/10.1016/S1000-9361(11)60045-9.CrossRefGoogle Scholar
  17. 17.
    Wang X, Zhan M, Guo J, and Zhao B Metals 6 (2016) 136.CrossRefGoogle Scholar
  18. 18.
    Teng B, Wang W, and Xu Y Eng Fract Mech 186 (2017) 242.  https://doi.org/10.1016/j.engfracmech.2017.10.014.CrossRefGoogle Scholar
  19. 19.
    Safdarian R Mech Ind 19 (2018) 202.CrossRefGoogle Scholar
  20. 20.
    Banabic D, and Kami A MATEC Web Conf 190 (2018) 01002.CrossRefGoogle Scholar
  21. 21.
    (ASTM) ASfTaM Metals test methods and analytical procedures. (ASTM) ASfTaM, West Conshohocken (1999).Google Scholar
  22. 22.
    Tvergaard V Int J Fract 18 (1982) 237.  https://doi.org/10.1007/bf00015686.Google Scholar
  23. 23.
    Tvergaard V, and Needleman A Acta Metall 32 (1984) 157. http://dx.doi.org/10.1016/0001-6160(84)90213-X.CrossRefGoogle Scholar
  24. 24.
    Chu CC, and Needleman A J Eng Mater Technol 102 (1980) 249.  https://doi.org/10.1115/1.3224807.CrossRefGoogle Scholar
  25. 25.
    Soyarslan C, Gharbi M M, Tekkaya A E Int J Solids Struct 49 (2012) 1608. http://dx.doi.org/10.1016/j.ijsolstr.2012.03.009.CrossRefGoogle Scholar
  26. 26.
    Franklin A Iron Steel Inst 207 (1969) 181.Google Scholar
  27. 27.
    Song F, Yang H, Li H, Zhan M, and Li G Chin J Aeronaut 26 (2013) 1336. http://doi.org/10.1016/j.cja.2013.07.039.CrossRefGoogle Scholar
  28. 28.
    Kossakowski PG Arch Civ Mech Eng 10 (2010) 15. http://doi.org/10.1016/S1644-9665(12)60048-X.CrossRefGoogle Scholar
  29. 29.
    ABAQUS, ABAQUS Analysis User's Manual version 6.13 (2013), Dassault Systemes Simulia Corp.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBehbahan Khatam Alanbia University of TechnologyBehbahanIran

Personalised recommendations