Transactions of the Indian Institute of Metals

, Volume 72, Issue 2, pp 383–399 | Cite as

Effect of the Supplementary Aging Process on the Microstructure and Mechanical Properties of Mg–5Sn and Mg–5Sn–0.5Zn Alloys

  • Masoud YousefiEmail author
  • Nadia Sadat Bahrololoumi Mofrad
  • Mohamad Sadegh Amiri Kerahroodi
  • Hanieh Sadat Barikbin
  • Mehdi Moudi
Technical Paper


This paper presents a novel aging process consisting of two stages: an aging at 250 °C for 12 h and a supplementary aging at 70 °C for 18 h. The ingots of Mg–5Sn and Mg–5Sn–0.5Zn alloys were solution heat-treated for 24 h at 480 °C and then quenched in water. Afterward, aging treatments were performed. To compare the effects of this process on age hardening response of both alloys, other aging treatments were performed at 200 °C for 60 h and at 280 °C for 12 h. The age hardening responses were measured by the Vickers hardness test. The structure of specimens was investigated by XRF, DSC, XRD, and FE-SEM. Also, mechanical properties were determined by tensile test and Charpy impact test. Although by using supplementary aging process, maximum hardness of these alloys is not very different in comparison with single- as well as double-aging processes, the necessary times of aging processes are significantly lower than those at around 90%, 85%, and 50%. After the aging process, the microstructure of Mg–5Sn and Mg–5Sn–0.5Zn alloys consists of α-Mg, nano-metric particles of Mg2Sn, and GP-zones. In Mg–5Sn alloy, after supplementary aging process, the yield strength, ultimate tensile strength, and elongation increase to 151.2 MPa, 221.2 MPa, and 8% sequentially. In Mg–5Sn–0.5Zn alloy, the YS, UTS, and elongation increase to 154 MPa, 224 MPa, and 7%, respectively. The impact energy in both alloys is 6.63 J and 7.05 J, respectively.


Novel aging process Mg–5Sn Mg–5Sn–0.5Zn Nanostructure Mechanical properties Supplementary aging 



The authors would like to thank Mr. Seyedmahdi Bahrololoumi Mofrad because of his supportive actions in providing necessary facilities to do this research and his helpful ideas. Also, we would like to thank Mr. Hossein Ebrahimi from University of Tehran and Lida Forouzandehfar who worked as the English editors of this article.


  1. 1.
    Pan H, Fu H, Ren Y, Huang Q, Gao Z, She J, Qin G, Yang Q, Song B, and Pan F, J Mater Sci Technol 32 (2016) 1240.CrossRefGoogle Scholar
  2. 2.
    Fu J W, and Yang Y S, J Cryst Growth 322 (2011) 84.CrossRefGoogle Scholar
  3. 3.
    Gibson M A, Fang X, Bettles C J, and Hutchinson C R, J Scr Mater 63 (2010) 899.CrossRefGoogle Scholar
  4. 4.
    Tang W N, Park S S, and You B S, J Mater Des 32 (2011) 3537.CrossRefGoogle Scholar
  5. 5.
    Jia H, Feng X, and Yang Y, J Magnes Alloys 3 (2015) 247.CrossRefGoogle Scholar
  6. 6.
    Nayyeri G, and Mahmudi R, J Mater Sci Eng A 527 (2010) 2087.CrossRefGoogle Scholar
  7. 7.
    Čίžek L, Greger M, Pawlica L, Dobrzański L A, Tański T, J Mater Process Technol 157–158 (2004) 466.Google Scholar
  8. 8.
    Liu H, Chen Y, Zhao H, Wei S, and Gao W, J Alloys Compd 504 (2010) 345.CrossRefGoogle Scholar
  9. 9.
    Huang Y, Dieringa H, Kainer K U, and Hort N, J Magnes Alloys 2 (2014) 124.CrossRefGoogle Scholar
  10. 10.
    Nayyeri G, Mahmudi R, and Salehi F, J Mater Sci Eng A 527 (2010) 5353.CrossRefGoogle Scholar
  11. 11.
    Jayalakshmi S, Sankaranarayanan S, Koh S P X, and Gupta M, J Alloys Compd 565 (2013) 56.CrossRefGoogle Scholar
  12. 12.
    Sasaki T T, Yamamoto K, Honma T, Kamado S, and Hono K, J Scr Mater 59 (2008) 1111.CrossRefGoogle Scholar
  13. 13.
    Harosh S, Miller L, Levi G, and Bamberger M, J Mater Sci 42 (2007) 9983.CrossRefGoogle Scholar
  14. 14.
    Min Z, Wen-zhang Z, Guo-zhen Z, and Kun Y, J Trans Nonferrous Met Soc China 17 (2007) 1428.CrossRefGoogle Scholar
  15. 15.
    Wang J, Li Y, Huang S, and Zhou X, J Appl Surf Sci 317 (2014) 1143.CrossRefGoogle Scholar
  16. 16.
    Avraham S, Katsman A, and Bamberger M, J Mater Sci 46 (2011) 6941.CrossRefGoogle Scholar
  17. 17.
    Meng F G, Wang J, Liu L B, and Jin Z P, J Alloys Compd 508 (2010) 570.CrossRefGoogle Scholar
  18. 18.
    Sasaki T T, Elsayed F R, Nakata T, Ohkubo T, Kamado S, and Hono K, J Acta Mater 99 (2015) 176.CrossRefGoogle Scholar
  19. 19.
    Huang X-F, and Zhang W-Z, J Mater Sci Eng A 522 (2012) 211.CrossRefGoogle Scholar
  20. 20.
    Son H, Lee J, Jeong H, and Konno T J, J Mater Lett 65 (2011) 1966.CrossRefGoogle Scholar
  21. 21.
    Mendis C L, Bettles C J, Gibson M A, and Hutchinson C R, J Mater Sci Eng A 435–436 (2006) 163.CrossRefGoogle Scholar
  22. 22.
    Chen J, Sun Y, Zhang J, Cheng W, Niu X, and Xu C, J Magnes Alloys 3 (2015) 121.CrossRefGoogle Scholar
  23. 23.
    Cheng W L, Park S S, Tang W N, You B S, and Koo B H, J Trans Nonferrous Met Soc China 20 (2010) 2246.CrossRefGoogle Scholar
  24. 24.
    Zhu T, Fu P, Peng L, Hu X, Zhu S, and Ding W, J Magnes Alloys 2 (2014) 27.CrossRefGoogle Scholar
  25. 25.
    Weili C, Park S S, Weineng T, You B S, and Koo B H, J Rare Earths 28 (2010) 785.CrossRefGoogle Scholar
  26. 26.
    Ha H Y, Kang J Y, Kim S G, Kim B, Park S S, Yim C D, and You B S, J Corros Sci 82 (2014) 369.CrossRefGoogle Scholar
  27. 27.
    Sasaki T T, Ju J D, Hono K, and Shin K S, J Scr Mater 61 (2009) 80.CrossRefGoogle Scholar
  28. 28.
    Sasaki T T, Oh-ishi K, Ohkubo T, and Hono K, J Mater Sci Eng A 530 (2011) 1.CrossRefGoogle Scholar
  29. 29.
    Zhang G, Chen J, Yan H, Su B, He X, and Ran M, J Alloys Compd 592 (2014) 250.CrossRefGoogle Scholar
  30. 30.
    Wang C, Liu H, Chen Y, and Xiao S, J Philos Mag 97 (2017) 1698.CrossRefGoogle Scholar
  31. 31.
    Nayyeri G, and Mahmudi R, J Mater Sci Eng A 527 (2010) 4613.CrossRefGoogle Scholar
  32. 32.
    Shi Z Z, and Zhang W Z, J Philos Mag Lett 93 (2013) 473.CrossRefGoogle Scholar
  33. 33.
    Liu H, Chen Y, Tang Y, Wei S, and Niu G, J Alloys Compd 440 (2007) 122.CrossRefGoogle Scholar
  34. 34.
    Khan F, and Panigrahi S K, J Magnes Alloys 3 (2015) 210.CrossRefGoogle Scholar
  35. 35.
    Yim C D, Yang J, Woo S K, Ha H Y, and You B S, J Corros Sci 90 (2015) 597.CrossRefGoogle Scholar
  36. 36.
    Van Der Planken J, J Mater Sci 4 (1969) 927.CrossRefGoogle Scholar
  37. 37.
    Sasaki T T, Oh-ishi K, Ohkubo T, and Hono K, J Scr Mater 55 (2006) 251.CrossRefGoogle Scholar
  38. 38.
    Guan R G, Shen Y F, Zhao Z Y, and Misra R D K, J Sci Rep 6 (2016) 23154.CrossRefGoogle Scholar
  39. 39.
    Huang X, Du Y, Li W, Chai Y, and Huang W, J Alloys Compd 696 (2017) 850.CrossRefGoogle Scholar
  40. 40.
    Bamberger M, J Mater Sci 41 (2006) 2821.CrossRefGoogle Scholar
  41. 41.
    Xiao W, Jia S, Wang L, Wu Y, and Wang L, J Mater Sci Eng A 527 (2010) 7002.CrossRefGoogle Scholar
  42. 42.
    Jiang Y, Chen Y, Liu H, and Jin L, J Alloys Compd 657 (2016) 68.CrossRefGoogle Scholar
  43. 43.
    Yadollahi M, Nami B, Abedi A, J Metal Mater Eng 25 (2014) 1.Google Scholar
  44. 44.
    Zhang G, Chen J, Yan H, Su B, He X, and Ran M, J Alloys Compd 592 (2014) 250.CrossRefGoogle Scholar
  45. 45.
    Liao J, Hotta M, Kaneko K, and Kondoh K, J Scr Mater 61 (2009) 208.CrossRefGoogle Scholar
  46. 46.
    Lü Y Z, Wang Q D, Ding W J, Zeng X Q, and Zhu Y P, J Mater Lett 44 (2000) 265.CrossRefGoogle Scholar
  47. 47.
    Yan C, Bai R X, Gu Y T, and Ma W J, J Acheiv Mater Manuf Eng 31 (2008) 398.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Energy and Mechanical Engineering, Abbaspour -Power and Water- College of EngineeringShahid Beheshti UniversityTehranIran
  2. 2.Faculty of Food and Sciences and EngineeringIslamic Azad UniversityTehranIran
  3. 3.Institute of Applied Materials-Reliability of Components and Systems (IAM-ZBS)KarlsruheGermany

Personalised recommendations