Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 2, pp 289–305 | Cite as

Effects of Thermal Conditions on Microstructure and Mechanical Properties of Cu–SiCp Surface Nanocomposites by Friction Stir Processing Route

  • S. CartigueyenEmail author
  • K. Mahadevan
Technical Paper
  • 23 Downloads

Abstract

In the present investigation, surface-level nanocomposites were prepared by friction stir processing (FSP) using 50 nm-sized SiC particles with a cluster of blind holes as particulate deposition technique on a 6-mm-thick pure Cu plate. Effects of thermal conditions during FSP by three process parameters in three levels using response surface methodology on microstructure and mechanical properties were studied. Regression models were developed for various responses, and ANOVA tool was used to check the adequacy of the developed models. The results showed that the peak temperature achieved during FSP played a vital role in deciding the microstructure of Cu–SiC nanocomposites and the corresponding mechanical properties. FESEM-based microstructural characterizations revealed a uniform dispersion of SiC and its well bonding with the copper matrix. Nanocomposite layers exhibited superior microhardness and dry sliding wear characteristics than the matrix metal. FSP was identified as a low energy consumption route for the successful fabrication of surface-level Cu/SiCp nanocomposites.

Keywords

FSP Copper Nanocomposites Heat generation Microstructure Mechanical properties RSM 

References

  1. 1.
    Ziyuan S H, and Deqing W, Appl Surf Sci 167 (2000) 107.CrossRefGoogle Scholar
  2. 2.
    Jiang J T, Zhen L, Xu C Y, and Wu X L, Surf Coat Technol 201 (2006) 3139.CrossRefGoogle Scholar
  3. 3.
    Attia A N, Mater Des 22 (2001) 451.CrossRefGoogle Scholar
  4. 4.
    Romankova S, Hayasakab Y, Shchetinin, Yoona J M, and Komarov S V, Appl Surf Sci 257 (2011) 5032.CrossRefGoogle Scholar
  5. 5.
    Mishra R S, Ma Z Y, and Charit I, Mater Sci Eng A 341 (2003) 307.CrossRefGoogle Scholar
  6. 6.
    Darras B, Omar M, and Khraisheh M, Mater Sci Forum 539–543 (2007) 3801.CrossRefGoogle Scholar
  7. 7.
    Mishra R S, and Ma Z Y, Mater Sci Eng A Rep 50 (2005) 1.CrossRefGoogle Scholar
  8. 8.
    Mishra R S, and Mahoney M W, Friction Stir Welding and Processing – E Publishing, ASM International Materials (2007).Google Scholar
  9. 9.
    Ma Z Y, Metall Mater Trans A 39 (2008) 642.CrossRefGoogle Scholar
  10. 10.
    Yong X G, Daniel S, and Michael R, Materials 3 (2010) 329.CrossRefGoogle Scholar
  11. 11.
    Arora H S, Singh H, and Dhindaw B K, Int J Adv Manuf Technol 61 (2012) 1043.CrossRefGoogle Scholar
  12. 12.
    Vipin S, Ujjwal P, and Manoj Kumar, B V, J Mater Process Technol 224 (2015) 117.CrossRefGoogle Scholar
  13. 13.
    Cartigueyen S, and Mahadevan K, J Mater Sci Surf Eng 2(2) (2015)133.Google Scholar
  14. 14.
    Asadi P, Besharati Givi M K, Abrinia K, Taherishargh M, and Salekrostam R, J Mater Eng Perform 20 (2011) 1554.CrossRefGoogle Scholar
  15. 15.
    Barmouz M, Asadi P, Givi M K B, and Taherishargh M, Mater Sci Eng A 528 (2011) 1740.CrossRefGoogle Scholar
  16. 16.
    Valverde J M, Castellanos A, Ramos A, and Watson P K, Phys Rev E 62–5 (2000) 6851.CrossRefGoogle Scholar
  17. 17.
    Akramifard H R, Shamanian M, Sabbaghian M, and Esmailzadeh M, Mater Des 54 (2014) 838.CrossRefGoogle Scholar
  18. 18.
    Sabbaghian M, Shamanian M, Akramifard H R, and Esmailzadeh M, Ceram Int 40 (2014) 12969.CrossRefGoogle Scholar
  19. 19.
    Song M, and Kovacevic R, Int J Mach Tools Manuf 43 (2003) 605.CrossRefGoogle Scholar
  20. 20.
    Chao Y J, Qi X, and Tang W, J Manuf Sci Eng Trans ASME 125 (2003) 138.CrossRefGoogle Scholar
  21. 21.
    Hwang Y M, Zongwei K, Yuang-Cherng C, and Hung-Hsiou H, Int. J. Mach Tools Manuf 48 (2008) 778.CrossRefGoogle Scholar
  22. 22.
    Schmidt H, Hattel J, and Wert J, Mater Sci Eng 12 (2004) 143.Google Scholar
  23. 23.
    Sathiskumar R, Murugan N, Dinaharan I, and Vijay S J, Indian Acad Sci 38 (2013) 1433.Google Scholar
  24. 24.
    Hwang Y M, Fan P L, and Lin C H, J Mater Process Technol 210 (2010) 1667.CrossRefGoogle Scholar
  25. 25.
    Cartigueyen S, Sukesh O P, and Mahadevan K, Procedia Eng 97 (2014) 1069.CrossRefGoogle Scholar
  26. 26.
    Chang C I, Du X H, and Huang J C, Scrip Mater 57 (2007) 209.CrossRefGoogle Scholar
  27. 27.
    Prakash T, Sivasankaran S, and Sasikumar P, Arab J Sci Eng 40 (2015) 559.CrossRefGoogle Scholar
  28. 28.
    Barmouz M, Givi M K B, and Asadi P, Defect Diffus Forum 312 (2011) 319.CrossRefGoogle Scholar
  29. 29.
    Salehi M, Saadatmand M, and Aghazadeh Mohandesi J, Trans Nonferrous Met 22 (2012) 1055.CrossRefGoogle Scholar
  30. 30.
    Suvarnaraju L, and Kumar A, Def Technol 10 (2014) 375.CrossRefGoogle Scholar
  31. 31.
    Puviyarasan M, and Senthil Kumar V S, Arab J Sci Eng (2015).  https://doi.org/10.1007/s13369-015-1654-5.
  32. 32.
    Hassan A M, Mayyas A T, Alrashdan A, and Hayajneh M T, J Mater Sci 43 (2008) 5368.CrossRefGoogle Scholar
  33. 33.
    Ramesh C S, NoorAhmed R, Mujeebu M A, and Abdullah M Z, Mater Des 30 (2009) 1957.CrossRefGoogle Scholar
  34. 34.
    Mahmoud E R I, Takahashi M, Shibayanagi T, and Ikeuchi K, Wear 268 (2010) 1111.CrossRefGoogle Scholar
  35. 35.
    Barmouz M, Givi M K B, and Seyfi J, Mater Charact 62 (2011) 108.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKaraikal Polytechnic CollegeKaraikalIndia
  2. 2.Department of Mechanical EngineeringPondicherry Engineering CollegePillaichavadyIndia

Personalised recommendations