Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 1, pp 205–214 | Cite as

Experimental and Taguchi-Based Grey Approach of Laser Metal Deposition Technique on Nickel-Based Superalloy

  • Ramesh Raju
  • Vinothkumar SivalingamEmail author
  • Jie SunEmail author
  • Manikandan Natarajan
  • Yanzhe Zhao
Technical Paper
  • 40 Downloads

Abstract

Thin sections of Inconel 718 sample was treated with laser-based metal deposition using a CW CO2 laser. The Taguchi-based grey relational approach was incorporated for determining the optimized process characteristics of the laser treatment. Laser scan speed was varied at a constant laser power in order to analyze the effect of cooling rate and the subsequent thermal gradient on the microstructure and other properties of the base alloy. The presence of γ′-(Ni3Al, Ni3Ti) and γ″-Ni3Nb precipitates in the interdendritic boundaries was evidenced in the deposition zone. The increase in laser scan speed to 600 m/min changed the microstructure from coarse to fine grains, and a further increase to maximum laser power of 1.75 kW showed the transformation to still finer dendritic structure. Even though the fine dendritic structure, it also resulted in delamination of bonding layers which could be deleterious. X-ray diffraction spectrum revealed the precipitation of γ-NiCr, γ′-Ni3Al and γ″-Ni3Nb in the γ-Ni matrix and there was no evidence for the transformation of γ″-Ni3Nb to δ-Ni3Nb. It indicated that the selected laser parameter had the least possibility of influence in the formation of intermetallics after treatment. The significant effect of grain refinement improved the hardness by 15–20%. The tensile test on Inconel 718 showed the Ni3Nb precipitate particles initiated the interfacial failure and was encountered with ductile mode of fracture.

Keywords

Inconel 718 Taguchi Laser metal deposition Microstructure Delamination Tensile behavior 

References

  1. 1.
    Davis J R, Davis and Associates. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, 1st Edition, ASM International, Materials Park, OH (2000).Google Scholar
  2. 2.
    John D N, John C L, Samuel D K, Welding Metallurgy and Weldability of Nickel-Base Alloys, 1st Edition, Wiley, New Jersy (2009).Google Scholar
  3. 3.
    Oguzhan Y, Nabil G, Jian G, Robot Comput Integr Manuf 26 (2010) 190.CrossRefGoogle Scholar
  4. 4.
    Leroy C, Czerwiec T, Gabet C, Belmonte T, Michel H. Surf Coat Technol 142–144 (2001) 241.CrossRefGoogle Scholar
  5. 5.
    Tomasz B, Agnieszka B, Marcin K, Halina G, Tadeusz W. Vacuum 83 (2009) 1489.CrossRefGoogle Scholar
  6. 6.
    Zongjie L, Xiongsheng Z, Chungen Z, Corros Sci 92 (2015) 148.CrossRefGoogle Scholar
  7. 7.
    Cao G H, Yao P P, Fu C, Russell A M, Surf Coat Technol 224 (2013) 57.CrossRefGoogle Scholar
  8. 8.
    Mishra N K, Mishra S B, Kumar R, Surf Coat Technol 260 (2014) 23.CrossRefGoogle Scholar
  9. 9.
    Zagula Y M, Romanowska J, Pytel M, Sieniawski J, Archiv Civ Mech Eng. Article in press.  https://doi.org/10.1016/j.acme.2015.03.006 (2015).
  10. 10.
    Mahmood K, Stevens N, Pinkerton A J, Surf Eng 28 (2012) 576.CrossRefGoogle Scholar
  11. 11.
    Kamara A M, Marimuthu S, Li L, Mater Manuf Process 29 (2014) 1245.CrossRefGoogle Scholar
  12. 12.
    Stanciu E M, Pascu A, Ţierean M H, Voiculescu I, Roată I C, Croitoru C, and Hulka I, Mater Manuf Process 31 (2016) 1556.CrossRefGoogle Scholar
  13. 13.
    Zhang Y C, Li Z G, Nie P L, Wu Y X, Surf Eng 29 (2013) 414.CrossRefGoogle Scholar
  14. 14.
    Ramesh R, Duraiselvam M, Vijay P, Shweta V, Rajendran R, Mater Sci Eng A 643 (2015) 64.CrossRefGoogle Scholar
  15. 15.
    Domashenkov A, Borbély A, and Smurov I, Mater Manuf Process 32 (2017) 93.CrossRefGoogle Scholar
  16. 16.
    Tabernero I, Lamikiz A, Martínez S, Ukar E, Figueras J, Int J Mach Tools Manuf 51 (2011) 465.CrossRefGoogle Scholar
  17. 17.
    Yilbas B S, Akhtar S S, Karatas C, Surface and Interface Analysis, wileyonlinelibrary.com,  https://doi.org/10.1002/sia.3811 (2011).
  18. 18.
    Zhang Q, Yao J H, Jyoti M, J Iron Steel ResInt 18 (2011) 73.CrossRefGoogle Scholar
  19. 19.
    ASTM: E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken (2011).Google Scholar
  20. 20.
    ASTM: B276-05, Standard Test Methods for Apparent Porosity in Cemented Carbides, ASTM International, West Conshohocken (2010).Google Scholar
  21. 21.
    Honga J K, Parkb J H, Parka N K, Eomc I S, Kimc M B, Kang C Y, J Mater Process Technol 201 (2008) 515.CrossRefGoogle Scholar
  22. 22.
    ASTM: E112, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken (2013).Google Scholar
  23. 23.
    Zemin W, Kai G, Ming G, Xiangyou L, Xiaofeng C, Xiaoyan Z, J Alloys Compd 513 (2012) 518.CrossRefGoogle Scholar
  24. 24.
    Guijun B, Andres G, Phys Procedia 12 (2011) 402.CrossRefGoogle Scholar
  25. 25.
    Fujia X, Yaohui L, Yuxin L, Fengyuan S, Peng H, Binshi X, J Mater Sci Technol 29 (2013) 480.CrossRefGoogle Scholar
  26. 26.
    Yi H, Terence G L, J Mater Sci 42 (2007) 421.CrossRefGoogle Scholar
  27. 27.
    Dinda G P, Dasgupta A K, Mazumder J, Mater Sci Eng A 509 (2009) 98.CrossRefGoogle Scholar
  28. 28.
    Lin C L, Mater Manuf Process 19 (2004) 209.CrossRefGoogle Scholar
  29. 29.
    Vinoth Kumar S, and Pradeep Kumar M, J Mech Sci Technol 28 (2014) 3777.CrossRefGoogle Scholar
  30. 30.
    Vinoth kumar S, and Pradeep Kumar M, Trans Indian Inst Met 70 (2017) 2293.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSanthiram Engineering CollegeNandyal, KurnoolIndia
  2. 2.Research Centre for Aeronautical Component Manufacturing Technology and EquipmentJinanChina
  3. 3.Micro Machining Research Centre, Department of Mechanical EngineeringSree Vidyanikethan Engineering CollegeTirupatiIndia

Personalised recommendations