Transactions of the Indian Institute of Metals

, Volume 72, Issue 1, pp 167–180 | Cite as

Dislocation Interaction and V-Shaped Growth of the Distorted Structure During Nanoindentation of Cu20Ni20Al20Co20Fe20 (high-entropy alloy)-Coated Copper: A Molecular Dynamics Simulation-Based Study

  • Dinesh Kumar Mishra
  • Md. Meraj
  • S. K. BadJena
  • Snehanshu PalEmail author
Technical Paper


In this paper, the deformation behavior of Cu20Ni20Al20Co20Fe20 high-entropy alloy-coated single-crystal Cu substrate which undergoes nanoindentation has been investigated under molecular dynamic simulation with embedded-atom method potential. The dynamic structural evolutions under nanoindentation are presented using centrosymmetry parameter analysis, common neighbor analysis and radial distribution function plots. In the initial level of nanoindentation, the interface deformation is greatly confronted by the confined V-shaped growth of the distorted structure. But the sudden discrete dislocation burst account for avalanche break-down in the interface layer, which further get influenced by the evolution of multiple dislocation nodes that is significantly governed by core spreading, extended misfit dislocation generation and relative rotation. In the meanwhile, the subsequent generation of dislocation locks, complicated multiple dislocation loops, dislocation junctions and limited cross-slip in wide stacking faults (SFs) hasten the work hardening and in turn slows down the deformation progress. On the other hand, the intermediate appearance of narrow SFs and slip bands significantly reduces the work hardening rate that increases the optimum fracture strain value of the specimen. Moreover, the overall increase in dislocation density and dislocation length leads to a significant growth in dislocation sources which leads to forest hardening in the later stage.


High-entropy alloy Nanoindentation Molecular dynamic simulation Deformation Stacking faults Dislocation node 



The authors want to thank the computer center of National Institute of Technology Rourkela for providing high-performance computing facility (HPCF) required for performing this study.

Supplementary material

12666_2018_1471_MOESM1_ESM.docx (219 kb)
Supplementary material 1 (DOCX 218 kb)


  1. 1.
    Francis R, Corrosion of Copper and its Alloys: A Practical Guide for Engineers, Nace Press, Houston, TX (2010) p 369.Google Scholar
  2. 2.
    Budinski K G, and Budinski M K, Engineering materials, Nature (2009) p 28.Google Scholar
  3. 3.
    Gao M C, Yeh J W, Liaw P K, and Zhang Y (eds), High-Entropy Alloys: Fundamentals and Applications, Springer, Berlin (2016) p 524.Google Scholar
  4. 4.
    Buckley D H, Surface Effects in Adhesion, Friction, Wear, and Lubrication, Elsevier, Oxford (1981) p 643.Google Scholar
  5. 5.
    Li W, and Li D Y, Appl Surf Sci 240 (2005) 388.Google Scholar
  6. 6.
    Li W, and Li D Y, Acta Mater 54 (2006) 445.Google Scholar
  7. 7.
    Zum Gahr K H, Microstructure and Wear of Materials, Elsevier, Oxford (1987) p 560.Google Scholar
  8. 8.
    Jien-Wei Y, Ann Chim Sci Mat 31 (2006) 633.Google Scholar
  9. 9.
    Xu X, Luo X, Zhuang H, Li W, and Zhang B, Mater Lett 57 (2003) 3987.Google Scholar
  10. 10.
    Tuck J R, Korsunsky A M, Davidson R I, Bull S J, and Elliott D M, Surf Coat Technol 127 (2000) 1.Google Scholar
  11. 11.
    Li Q, Huang C, Liang Y, Fu T, and Peng T, J Nanomater 2016 (2016) 1.Google Scholar
  12. 12.
    Hsu H C, Chu L M, Chang W Y, Chen Y F, Chien J H, Fu S L, Ju S P, and Feng W J, J Mater Sci: Mater Electron 24 (2013) 3594.Google Scholar
  13. 13.
    Scott D A, Archaeometry 28 (1986) 33.Google Scholar
  14. 14.
    Rao K P, Sankar A, Rafi H K, Ram G J, and Reddy G M, Int J Adv Manuf Technol 65 (2013) 755.Google Scholar
  15. 15.
    Singh B P, Jena B K, Bhattacharjee S, and Besra L, Surf Coat Technol 232 (2013) 475.Google Scholar
  16. 16.
    Lebbai M, Szeto W K, and Kim J K, Optimization of black oxide coating thickness as adhesion promoter for copper substrate, In Electronic Materials and Packaging, 2000. (EMAP 2000), International Symposium on, IEEE, China (2000) 206.Google Scholar
  17. 17.
    Lebbai M, Kim J K, Szeto W K, Yuen M M, and Tong P, J Electron Mater 32 (2003) 558.Google Scholar
  18. 18.
    Borisov A M, Savushkina S V, Vinogradov A V, Tkachenko N V, Vostrikov V G, Romanovsky E A, Polyansky M N, and Ashmarin A A, J Surf Invest X-ray Synchrotron Neutron Tech 8 (2014) 338.Google Scholar
  19. 19.
    Das S, Kumar D S, and Bhaumik S, Appl Therm Eng 96 (2016) 555.Google Scholar
  20. 20.
    Raza M A, Rehman Z U, Ghauri F A, Ahmad A, Ahmad R, and Raffi M, Thin Solid Films 620 (2016) 150.Google Scholar
  21. 21.
    Won M S, Penkov O V, and Kim D E, Carbon 54 (2013) 472.Google Scholar
  22. 22.
    Wlasny I, Dabrowski P, Rogala M, Pasternak I, Strupinski W, Baranowski J M, and Klusek Z, Corros Sci 92 (2015) 69.Google Scholar
  23. 23.
    Yan H, Zhang J, Zhang P, Yu Z, Li C, Xu P, and Lu Y, Surf Coat Technol 232 (2013) 362.Google Scholar
  24. 24.
    Cheng L, Xiong X, and Dong S J, Trans Nonferrous Met Soc China 21 (2011) 317.Google Scholar
  25. 25.
    Wu C L, Zhang S, Zhang C H, Zhang H, and Dong S Y, Surf Coat Technol 315 (2017) 368.Google Scholar
  26. 26.
    Wu C L, Zhang S, Zhang C H, Chen J, and Dong S Y, Opt Laser Technol 94 (2017) 68.Google Scholar
  27. 27.
    Rao A V, Latthe S S, Mahadik S A, and Kappenstein C, Appl Surf Sci 257 (2011) 5772.Google Scholar
  28. 28.
    Huang Y, Sarkar D K, Gallant D, and Chen X G, Appl Surf Sci 282 (2013) 689.Google Scholar
  29. 29.
    Wang P, Zhang D, Qiu R, Wan Y, and Wu J, Corros Sci 80 (2014) 366.Google Scholar
  30. 30.
    Wang P, Zhang D, Qiu R, and Wu J, Corros Sci 83 (2014) 317.Google Scholar
  31. 31.
    Chang S Y, and Chen D S, Appl Phys Lett 94 (2009) 231909.Google Scholar
  32. 32.
    Chang S Y, Chen M K, and Chen D S, J Electrochem Soc 156 (2009) G37.Google Scholar
  33. 33.
    Chen D S, Chen M K, and Chang S Y, ECS Trans 19 (2009) 751.Google Scholar
  34. 34.
    Tsai M H, Wang C W, Tsai C W, Shen W J, Yeh J W, Gan J Y, and Wu W W, J Electrochem Soc 158 (2011) H1161.Google Scholar
  35. 35.
    Tsai M H, Wang C W, Lai C H, Yeh J W, and Gan J Y, Appl Phys Lett 92 (2008) 052109.Google Scholar
  36. 36.
    Tsai M H, Yeh J W, and Gan J Y, Thin Solid Films 516 (2008) 5527.Google Scholar
  37. 37.
    Chang S Y, Wang C Y, Li C E, and Huang Y C, Nanosci Nanotechnol Lett 3 (2011) 289.Google Scholar
  38. 38.
    Chang S Y, Wang C Y, Chen M K, and Li C E, J Alloys Compd 509 (2011) L85.Google Scholar
  39. 39.
    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.Google Scholar
  40. 40.
    Yeh J W, Chen Y L, Lin S J, and Chen S K, Mater Sci Forum 560 (2007) 1.Google Scholar
  41. 41.
    Babu B S, Kumaraswamy A, and Prasad B A, Trans Indian Inst Met 69 (2016) 759.Google Scholar
  42. 42.
    Beegan D, Chowdhury S, and Laugier M T, Surf Coat Technol 176 (2003) 124.Google Scholar
  43. 43.
    Saha R, and Nix W D, Acta Mater 50 (2002) 23.Google Scholar
  44. 44.
    SridharBabu B, Kumaraswamy A, and AnjaneyaPrasad B, Trans Indian Inst Met 68 (2015) 143.Google Scholar
  45. 45.
    Meraj M, and Pal S, Trans Indian Inst Met 69 (2016) 277.Google Scholar
  46. 46.
    Reddy K V, and Pal S, Trans Indian Inst Met 71 (2018) 1721.Google Scholar
  47. 47.
    Sun S, Peng X, Xiang H, Huang C, Yang B, Gao F, and Fu T, Ceram Int 43 (2017) 16313.Google Scholar
  48. 48.
    Chang S W, Nair A K, and Buehler M J, Philos Mag Lett 93 (2013) 196.Google Scholar
  49. 49.
    Feng C, Peng X, Fu T, Zhao Y, Huang C, and Wang Z, Phys E 87 (2017) 213.Google Scholar
  50. 50.
    Chen T, Tan L, Lu Z, and Xu H, Acta Mater 138 (2017) 83.Google Scholar
  51. 51.
    Kim Y C, Gwak E J, Ahn S M, Jang J I, Han H N, and Kim J Y, Acta Mater 138 (2017) 52.Google Scholar
  52. 52.
    Gao Y, Brodyanski A, Kopnarski M, and Urbassek H M, Comput Mater Sci 103 (2015) 77.Google Scholar
  53. 53.
    Shi J, Chen J, Sun K, Sun J, Han J, and Fang L, Mater Chem Phys 198 (2017) 177.Google Scholar
  54. 54.
    Fang T H, Jian S R, and Chuu D S, Jpn J Appl Phys 41 (2002) L1328.Google Scholar
  55. 55.
    Wolf D, Yamakov V, Phillpot S R, Mukherjee A, and Gleiter H, Acta Mater 53 (2005) 1.Google Scholar
  56. 56.
    Chang S Y, Li C E, Huang Y C, Hsu H F, Yeh J W, and Lin S J, Sci Rep 4 (2014) 4162.Google Scholar
  57. 57.
    Chang S Y, Lin S Y, Huang Y C, and Wu C L, Surf Coat Technol 204 (2010) 3307.Google Scholar
  58. 58.
    Lin S Y, Chang S Y, Huang Y C, Shieu F S, and Yeh J W, Surf Coat Technol 206 (2012) 5096.Google Scholar
  59. 59.
    Lin S Y, Chang S Y, Chang C J, and Huang Y C, Entropy 16 (2013) 405.Google Scholar
  60. 60.
    Nosé S, J Chem Phys 81 (1984) 511.Google Scholar
  61. 61.
    Hoover W G, Phys Rev A 31 (1985) 1695.Google Scholar
  62. 62.
    Han J, Sun J, Han Y, Zhu H, and Fang L, Metals 8 (2018) 344.Google Scholar
  63. 63.
    Chen J, Shi J, Wang Y, Sun J, Han J, Sun K, and Fang L, RSC Adv 8 (2018) 12597.Google Scholar
  64. 64.
    Liu Y, Duan Y, and Zhang J, Nanomaterials 8 (2018) 695.Google Scholar
  65. 65.
    Sadat M R, Bringuier S, Muralidharan K, Frantziskonis G, and Zhang L, Comput Mater Sci 142 (2018) 227.Google Scholar
  66. 66.
    Jiapeng S, Cheng L, Han J, Ma A, and Fang L, Sci Rep 7 (2017) 10282.Google Scholar
  67. 67.
    Ghaffarian H, Taheri A K, Ryu S, and Kang K, Curr Appl Phys 16 (2016) 1015.Google Scholar
  68. 68.
    Fang T H, Weng C I, and Chang J G, Mater Sci Eng: A 357 (2003) 7.Google Scholar
  69. 69.
    Szlufarska I, Kalia R K, Nakano A, and Vashishta P, Phys Rev B 71 (2005) 174113.Google Scholar
  70. 70.
    Liu C L, Fang T H, and Lin J F, Mater Sci Eng: A 452 (2007) 135.Google Scholar
  71. 71.
    Wang C T, Jian S R, Jang J S C, Lai Y S, and Yang P F, Appl Surf Sci 255 (2008) 3240.Google Scholar
  72. 72.
    Gao Y, Ruestes C J, and Urbassek H M, Comput Mater Sci 90 (2014) 232.Google Scholar
  73. 73.
    Remington T P, Ruestes C J, Bringa E M, Remington B A, Lu C H, Kad B, and Meyers M A, Acta Mater 78 (2014) 378.Google Scholar
  74. 74.
    Huang C C, Chiang T C, and Fang T H, Appl Surf Sci 353 (2015) 494.Google Scholar
  75. 75.
    Zhao Y, Peng X, Fu T, Huang C, Feng C, Yin D, and Wang Z, Appl Surf Sci 382 (2016) 309.Google Scholar
  76. 76.
    Huang C, Peng X, Fu T, Zhao Y, Feng C, Lin Z, and Li Q, Appl Surf Sci 392 (2017) 215.Google Scholar
  77. 77.
    Plimpton S, J Comput Phys 117 (1995) 1.Google Scholar
  78. 78.
    Stukowski A, Modell Simul Mater Sci Eng 18 (2009) 015012.Google Scholar
  79. 79.
    Zhou X W, Johnson R A, and Wadley H N G, Phys Rev B 69 (2004) 144113.Google Scholar
  80. 80.
    Xie L, Brault P, Thomann A L, and Bauchire J M, Appl Surf Sci 285 (2013) 810.Google Scholar
  81. 81.
    Xie L, Brault P, Thomann A L, Yang X, Zhang Y, and Shang G, Intermetallics 68 (2016) 78.Google Scholar
  82. 82.
    Sharma A, Singh P, Johnson D D, Liaw P K, and Balasubramanian G, Sci Rep 6 (2016) 31028.Google Scholar
  83. 83.
    Daw M S, Foiles S M, and Baskes M I, Mater Sci Rep 9 (1993) 251.Google Scholar
  84. 84.
    Brink T, Koch L, and Albe K, Phys Rev B 94 (2016) 224203.Google Scholar
  85. 85.
    Meraj M, and Pal S, IOP Conf Ser: Mater Sci Eng 115 (2016) 012019.Google Scholar
  86. 86.
    Zhang Y H, Zhuang Y, Hu A, Kai J J, and Liu C T, Scr Mater 130 (2017) 96.Google Scholar
  87. 87.
    Koch L, Granberg F, Brink T, Utt D, Albe K, Djurabekova F, and Nordlund K, J Appl Phys 122 (2017) 105106.Google Scholar
  88. 88.
    Afkham Y, Bahramyan M, Mousavian R T, and Brabazon D, Mater Sci Eng: A 698 (2017) 143.Google Scholar
  89. 89.
    Li J, Fang Q, Liu B, Liu Y, and Liu Y, RSC Adv 6 (2016) 76409.Google Scholar
  90. 90.
    Maiti S, and Steurer W, Acta Mater 106 (2016) 87.Google Scholar
  91. 91.
    Hertz H, J Reine Angew Math 92 (1882) 156.Google Scholar
  92. 92.
    Li Y, Goyal A, Chernatynskiy A, Jayashankar J S, Kautzky M C, Sinnott S B, and Phillpot S R, Mater Sci Eng: A 651 (2016) 346.Google Scholar
  93. 93.
    Zhu P Z, and Fang F Z, Appl Phys A 108 (2012) 415.Google Scholar
  94. 94.
    Fu T, Peng X, Chen X, Weng S, Hu N, Li Q, and Wang Z, Sci Rep 6 (2016) 35665.Google Scholar
  95. 95.
    Juday R, Silva E M, Huang J Y, Caldas, P G, Prioli R, and Ponce F A, J Appl Phys 113 (2013) 183511.Google Scholar
  96. 96.
    Liu Q, Deng L, and Wang X, Mater Sci Eng: A 676 (2016) 182.Google Scholar
  97. 97.
    Steck E (Ed.), Plasticity of metals: experiments, models, computation, Wiley-VCH, Germany (2001) p 426.Google Scholar
  98. 98.
    Dieter G E, and Bacon D J, Mechanical metallurgy, McGraw-hill, New York City (1986) p 767.Google Scholar
  99. 99.
    Cottrell A H, Lond Edinbu Dublin Philos Mag J Sci 43 (1952) 645.Google Scholar
  100. 100.
    Shao S, Wang J, Beyerlein I J, and Misra A, Acta Mater 98 (2015) 206.Google Scholar
  101. 101.
    Li J, Van Vliet K J, Zhu T, Yip S, and Suresh S, Nature 418 (2002) 307.Google Scholar
  102. 102.
    Kelchner C L, Plimpton S J, and Hamilton J C, Phys Rev B 58 (1998) 11085.Google Scholar
  103. 103.
    Jian W W, Cheng G M, Xu W Z, Koch C C, Wang Q D, Zhu Y T, and Mathaudhu S N, Appl Phys Lett 103 (2013) 133108.Google Scholar
  104. 104.
    Meraj M, Dutta K, Bhardwaj R, Yedla N, Karthik V, and Pal S, J Mater Eng Perform 26 (2017) 5197.Google Scholar
  105. 105.
    Matthews J W, and Blakeslee A E, J Cryst Growth 27 (1974) 118.Google Scholar
  106. 106.
    Tsuzuki H, Branicio P S, and Rino J P, Acta Mater 57 (2009) 1843.Google Scholar
  107. 107.
    Yue T M, Xie H, Lin X, Yang H O, and Meng G H, J Alloys Compd 587 (2014) 588.Google Scholar
  108. 108.
    Yedla N, and Ghosh S, Intermetallics 80 (2017) 40.Google Scholar
  109. 109.
    Yaghoobi M, and Voyiadjis G Z, Comput Mater Sci 111 (2016) 64.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials EngineeringVeer Surendra Sai University of TechnologyBurlaIndia
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations