Microstructural Characterization of Equiatomic CrFeNbNiV Alloy
- 34 Downloads
Abstract
This paper presents the results of an experimental study to investigate the structural and microchemical characteristics of an equiatomic CrFeNbNiV alloy. XRD analysis of CrFeNbNiV alloy, revealed a predominant NbCrNi type HCP Laves phase conjoined with two minor tetragonal and BCC phases. Detailed microstructural investigations using electron microscopy techniques also substantiated the presence of the above mentioned phases. The structure of Laves phase in this alloy is determined ab initio for the first time using Precession Electron Diffraction technique which was in agreement with the Rietveld analysis of XRD pattern. The formation of intermetallic Laves phase was understood based on theoretical phase stability and average d- orbital energy level \(\overline{\text{Md}}\) value calculations. The alloy in the ‘as cast’ condition exhibited a very high value of hardness (~ 1500 Hv). No change in the microstructure and hardness was observed on annealing at high temperatures even up to 1373 K (1100 °C).
Keywords
High entropy alloy Precession electron diffraction Automated diffraction tomography Microstructure Laves phase Phase stabilityNotes
Acknowledgements
Authors would like to thank Dr. G. Amarendra, Director, Metallurgy and Materials Group, and Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research for their sustained support and encouragement in the pursuit of this work. Mr. Saikumaran expresses his deep sense of gratitude to HBNI for funding this project. The authors also thank UGC-DAE consortium for SEM facilities, Dr. N. V. Chandrasekar and Mr. Meenakshi sundaram for their help in alloy melting, Dr. S. Kalavathy and Mr. Irshad. K. Abbas for the XRD experiments.
Compliance with Ethical Standards
Data Availability
The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.
References
- 1.Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.CrossRefGoogle Scholar
- 2.Murty B S, Yeh J-W, and Ranganathan S, High-entropy Alloys, Butterworth-Heinemann, Oxford (2014).Google Scholar
- 3.Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, and Lu Z P, Prog Mater Sci, 61 (2014) 1.CrossRefGoogle Scholar
- 4.Tsai M-H, and Yeh J-W, Mater Res Lett 2 (2014) 107.CrossRefGoogle Scholar
- 5.Yeh J-W, Jom 65 (2013) 1759.CrossRefGoogle Scholar
- 6.Huang Y-S, Recent Patents Mater Sci 2 (2009) 154.CrossRefGoogle Scholar
- 7.Cantor B, Chang I, Knight P, and Vincent A, Mater Sci Eng A A 375 (2004) 213.CrossRefGoogle Scholar
- 8.Lin C-M, Tsai H-L, and Bor H-Y, Intermetallics 18 (2010) 1244.CrossRefGoogle Scholar
- 9.Ng C, Guo S, Luan J, Shi S, and Liu CT, Intermetallics 31 (2012) 165.CrossRefGoogle Scholar
- 10.Ke G-Y, Chen S-K, Hsu T, and Yeh J-W, Annales de chimie Lavoisier 31 (2006) 669.CrossRefGoogle Scholar
- 11.Guo S, Ng C, and Liu CT, J Alloy Compd 557 (2013) 77.CrossRefGoogle Scholar
- 12.Zhou Y, Zhang Y, Wang F, Wang Y, and Chen G, J Alloy Compd 466 (2008) 201.CrossRefGoogle Scholar
- 13.Zhou Y, Zhang Y, Wang Y, and Chen G, Mater Sci Eng A 454 (2007) 260.CrossRefGoogle Scholar
- 14.Zhou Y, Zhang Y, Wang F, and Chen G, Appl Phys Lett 92 (2008) 241917.CrossRefGoogle Scholar
- 15.Wu Y, Cai Y, Wang T, Si J, Zhu J, Wang Y, and Hui X, Mater Lett 130 (2014) 277.CrossRefGoogle Scholar
- 16.Wang Z, Guo S, and Liu C T, JOM 66 (2014) 1966.CrossRefGoogle Scholar
- 17.Hsu C-Y, Juan C-C, Wang W-R, Sheu T-S, Yeh J-W, and Chen S-K, Mater Sci Eng A 528 (2011) 3581.CrossRefGoogle Scholar
- 18.Juan C-C, Hsu C-Y, Tsai C-W, Wang W-R, Sheu T-S, Yeh J-W, and Chen S-K, Intermetallics 32 (2013) 401.CrossRefGoogle Scholar
- 19.Jiang H, Jiang L, Han K, Lu Y, Wang T, Cao Z, and Li T, J Mater Eng Perform 24 (2015) 4594.CrossRefGoogle Scholar
- 20.Tsai M-H, Yuan H, Cheng G, Xu W, Jian W W, Chuang M-H, Juan C-C, Yeh A-C, Lin S-J, and Zhu Y, Intermetallics 33 (2013) 81.CrossRefGoogle Scholar
- 21.Tsai C-W, Chen Y-L, Tsai M-H, Yeh J-W, Shun T-T, and Chen S-K J Alloy Compd 486 (2009) 427.CrossRefGoogle Scholar
- 22.Tsai M-H, Yuan H, Cheng G, Xu W, Tsai K-Y, Tsai C-W, Jian W W, Juan C-C, Shen W-J, and Chuang M-H, Intermetallics 32 (2013) 329.CrossRefGoogle Scholar
- 23.Xu X, Liu P, Guo S, Hirata A, Fujita T, Nieh T, Liu C, and Chen M, Acta Mater 84 (2015) 145.CrossRefGoogle Scholar
- 24.Furtek A, in Book of Abstracts and Proc. 7th Int. Conf. Nuclear Option in Countries with Small and Medium Electricity Grids, (eds) Cavlina N, Pevec D, Bajs T, Croatian Nuclear Society, Croatia (2008) 19.Google Scholar
- 25.Murty K, and Charit I, J Nucl Mater 383 (2008) 189.CrossRefGoogle Scholar
- 26.Yvon P, and Carré F, J Nucl Mater 385 (2009) 217.CrossRefGoogle Scholar
- 27.Yvon P, Structural Materials for Generation IV Nuclear Reactors, Woodhead Publishing, Cambridge, 2016.Google Scholar
- 28.Avilov A, Kuligin K, Nicolopoulos S, Nickolskiy M, Boulahya K, Portillo J, Lepeshov G, Sobolev B, Collette JP, Martin N, and Robins AC, Ultramicroscopy 107 (2007) 431.Google Scholar
- 29.Kolb U, Gorelik T, Kübel C, Otten M, and Hubert D, Ultramicroscopy 107 (2007) 507.CrossRefGoogle Scholar
- 30.Kolb U, Gorelik T, and Otten M, Ultramicroscopy 108 (2008) 763.CrossRefGoogle Scholar
- 31.Sheng G, and Liu CT, Prog Nat Sci Mater Int 21 (2011) 433.CrossRefGoogle Scholar
- 32.Yang X, and Zhang Y, Mater Chem Phys 132 (2012) 233.CrossRefGoogle Scholar
- 33.Zhang Y, Zhou Y J, Lin J P, Chen G L, and Liaw P K, Adv Eng Mater 10 (2008) 534.CrossRefGoogle Scholar
- 34.Mohanty S, Maity T, Mukhopadhyay S, Sarkar S, Gurao N, Bhowmick S, and Biswas K, Mater Sci Eng A 679 (2017) 299.CrossRefGoogle Scholar
- 35.Mridha S, Samal S, Khan P Y, and Biswas K, Metallurg Mater Trans A 44 (2013) 4532.CrossRefGoogle Scholar
- 36.Mohanty S, Gurao N, and Biswas K, Mater Sci Eng A 617 (2014) 211.CrossRefGoogle Scholar
- 37.Sonkusare R, Divya Janani P, Gurao N, Sarkar S, Sen S, and Pradeep K, Mater Chem Phys 210 (2017) 269.Google Scholar
- 38.Takeuchi A, and Inoue A, Mater Trans 46 (2005) 2817.CrossRefGoogle Scholar
- 39.Mehrer H (ed), Landolt-Börnstein numerical data and functional relationships in science and technology, Springer-Verlag, Berlin, Heidelberg, Group III, 26 (1990) p 47.Google Scholar
- 40.Morinaga M, Yukawa N, Adachi H, and Ezaki H, Superalloys 1984 (1984) 523.Google Scholar
- 41.Lu Y, Dong Y, Jiang L, Wang T, Li T, Zhang Y Entropy 17 (2015) 2355.CrossRefGoogle Scholar
- 42.Zhang Y, Yang X, and Liaw P, Jom 64 (2012) 830.CrossRefGoogle Scholar
- 43.He F, Wang Z, Cheng P, Wang Q, Li J, Dang Y, Wang J, and Liu C, J Alloys Compd 656 (2016) 284.CrossRefGoogle Scholar
- 44.Jiang L, Lu Y, Wu W, Cao Z, and Li T, J Mater Sci Technol 32 (2016) 245.CrossRefGoogle Scholar