Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 1, pp 93–110 | Cite as

Effect of Heat Treatment on Mechanical Properties and Corrosion Behaviour of API X70 Linepipe Steel in Different Environments

  • Lochan Sharma
  • Rahul ChhibberEmail author
Technical Paper
  • 32 Downloads

Abstract

Linepipe steels find application in oil and gas transportation, pressure vessels, offshore and other engineering parts because of its high strength as well as high ductility. The reason behind the combination of high strength and ductility is the very fine-grained microstructure. In the present work, a heat treatment procedure was used to alter the microstructure of as-received parent metal and to study its effect on the corrosion behaviour of as-received X70 linepipe steel. One-step austenitizing followed by quenching and subsequent tempering was performed at 300 °C, 450 °C and 600 °C temperatures to alter the microstructure of as-received base metal. To find the corrosion behaviour due to weight loss, as-received steel specimens were exposed in four different environments for 30 days (normal water pH-7, seawater pH-8.2, 5%NaCl + 10−2 mol/l sodium thiosulphate pH-3 and 5%NaCl + 10−3 mol/l sodium thiosulphate pH-5). Microstructure of different heat-treated samples shows the presence of different phases developed during heat treatment. Macrostructure examination of different immersed specimens reveals the presence of pits on the outer surface. Different pH and concentration of various exposed solutions affect the corrosion behaviour of heat-treated samples. Microhardness and impact strength of heat-treated samples were evaluated.

Keywords

Linepipe steel Corrosion resistance Heat treatment Microstructure Microhardness Impact toughness 

Notes

Acknowledgement

Material (API X70) and testing support by Jindal Steel and Power Limited, Angul, and Jindal SAW Limited, Mundra, is greatly acknowledged.

References

  1. 1.
    Scully J C, The Fundamental of Corrosion. Maxwell Macmillan Perganman Publishing Corporation, Oxford (1990).Google Scholar
  2. 2.
    Yakubtsov I A, Poruks P, and Boyd J D, Mater Sci Eng A, 480 (2008) 109.CrossRefGoogle Scholar
  3. 3.
    Zhao M C, Yang K, and Shan Y-Y, Mater Lett 57 (2003) 1496.CrossRefGoogle Scholar
  4. 4.
    Xiao F, Liao B, Ren D, Shan Y, and Yang K, Mater Charact 54 (2005) 305.CrossRefGoogle Scholar
  5. 5.
    Rajan T V, Sharma C P, and Sharma A, Heat Treatment Principles and Techniques, Prentice Hall of India Private Limited, New Delhi (1989), p 36.Google Scholar
  6. 6.
    Daramola O O, Adewuyi B O, and Oladele I O, J Miner Mater Charact Eng 9 (2010) 693.Google Scholar
  7. 7.
    Roberge P R, Hand Book of Corrosion Engineering, McGraw-Hill Inc., New York (2000), p 65.Google Scholar
  8. 8.
    Nicholas S, Rust Is Risk, Intech, USA (2009).Google Scholar
  9. 9.
    Designation: D1141-98, Standard Practice for the Preparation of Substitute Ocean Water, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee, Reapproved (2013).Google Scholar
  10. 10.
    American Society for Testing and Materials—ASTM. ASTM G1-03. West Conshohocken (2011).Google Scholar
  11. 11.
    Zeng L, Zhang G A, and Guo X P, Corros Sci 85 (2014) 318.CrossRefGoogle Scholar
  12. 12.
    Vera R, Tapia C, and Rosales B M, Corros Sci 45 (2003) 321.CrossRefGoogle Scholar
  13. 13.
    Zheng Z B, Zheng Y G, Zhou X, He S Y, Sun W H, and Wang J Q, Corros Sci 88 (2014) 187.CrossRefGoogle Scholar
  14. 14.
    Cervantes Tobón A, Díaz Cruz M, Domínguez Aguilar M A, and González Velázquez J L, Int J Electrochem Sci 10 (2015) 2904.Google Scholar
  15. 15.
    Alizadeh M, and Bordbar S, Corros Sci 70 (2013), 170.CrossRefGoogle Scholar
  16. 16.
    Fu, Q A and Cheng Y F, Corros Sci 52 (2010) 2511.CrossRefGoogle Scholar
  17. 17.
    Baboian and Turcotte, Corros Sci 25 (1985) 958.Google Scholar
  18. 18.
    Hongwei W, Chi Y, and Shaowen H, Int J Electrochem Sci 10 (2015) 5827.Google Scholar
  19. 19.
    Zhao G X, Lu X H, Xiang J M, and Hant Y, Int J Iron Steel Res 16 (2009) 89.CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Pang X, Qua S, Li X, and Gao K, Corros Sci 59 (2012), 186.CrossRefGoogle Scholar
  21. 21.
    Li T, Yang Y, Gao K, and Lu M, J Univ Sci Technol Beijing Miner Metall Mater 15 (2008), 702.Google Scholar
  22. 22.
    Villareal J, Corrosion in Multiphase Systems with Slug Flow, Case: Crude oil, CO 2 , Sea Water on the Carbon Steel 1018, Thesis. Santander Industrial University, Bucaramanga (2003) (in Spanish).Google Scholar
  23. 23.
    Li T, Yang Y, Gao K, and Lu M, J Univ Sci Technol Beijing Miner Metall Mater 15 (2008) 702. http://dx.doi.org/10.1016/S1005-8850(08)60274-1.
  24. 24.
    Alawadhi K and Robinson M J, Corros Eng Sci Technol 46 (2011) 318.CrossRefGoogle Scholar
  25. 25.
    Muñoz J, Genesca R, Duran J, and Mendoza A, in Proceedings of the Corrosion, paper no. 05297. NACE International, Houston (2005).Google Scholar
  26. 26.
    De Waard C, and Milliams D E, in Proceedings of the First International Conferences “Internal and External Protection of Pipes”. University of Durham (1975).Google Scholar
  27. 27.
    Schmitt G, and Rothmann B, in Proceedings of the Corrosion, NACE International, Houston (1984), p 163.Google Scholar
  28. 28.
    George K S, and Nešić S, Corrosion 63 (2007) 178.CrossRefGoogle Scholar
  29. 29.
    Ma H, Cheng X, Li G, Chen S, Quan Z, and Zhao S, Corros Sci 42 (2000) 1669.CrossRefGoogle Scholar
  30. 30.
    Tang J, Shao Y, Guo J, Zhang T, Meng G, and Wang F, Corros Sci 52 (2010) 2050.CrossRefGoogle Scholar
  31. 31.
    Shoesmith D W, Taylor P, Bailey M G, and Owen D G, J Electrochem Soc 127 (1980) 1007.Google Scholar
  32. 32.
    Cheng X L, Ma H Y, Zhang J P, Chen X, Chen S H, and Yang H Q, Corrosion 54 (1998), 369.CrossRefGoogle Scholar
  33. 33.
    Choi Y S, Nesic S, and Ling S, Electrochimica Acta 56 (2011) 1752.CrossRefGoogle Scholar
  34. 34.
    Zhou C, Zheng S, Chen C, and Lu G, Corros Sci 67(2013), 184.CrossRefGoogle Scholar
  35. 35.
    Ren C, Liu D, Bai Z, and Li T, Mater Chem Phys 93 (2005) 305.CrossRefGoogle Scholar
  36. 36.
    Park G T, Koh S U, Jung H G, and Kim K Y, Corros Sci 50 (2008) 1865.CrossRefGoogle Scholar
  37. 37.
    Koh S U, Kim J S, Yang B Y, and Kim K Y, Corrosion 60 (2004) 244.CrossRefGoogle Scholar
  38. 38.
    Carneiro R A, Ratnapuli R C, and de Freitas Cunha Lins V, Mater Sci Eng A 357 (2003) 104.Google Scholar
  39. 39.
    Zhao M C, and Yang K, Scr Mater 52 (2005) 881.CrossRefGoogle Scholar
  40. 40.
    Bott I S, Souza L F G, Teixeira J C G, and Rios P R, Metall Mater Trans A Phys Metall Mater Sci 36A (2005) 443.Google Scholar
  41. 41.
    Nagu G A, Amarnath, and Namboodhiri T K, Bull Mater Sci 26 (2000) 435.Google Scholar
  42. 42.
    Ramunni V, Coelho T D, and de Miranda P, Mater Sci Eng A 435–436 (2006) 504.CrossRefGoogle Scholar
  43. 43.
    Aydoˇgdu G H, and Aydinol M K, Corros Sci 48 (2006) 3565.CrossRefGoogle Scholar
  44. 44.
    Kane R D, Int Met Rev 30 (1985) 291.CrossRefGoogle Scholar
  45. 45.
    Adriana F B, José A P B, and Botta I S, Mater Res 18(2), (2015), 417.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentIndian Institute of Technology JodhpurKarwarIndia

Personalised recommendations