Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 2, pp 271–288 | Cite as

Copper Chalcopyrites for Solar Energy Applications

  • Sreekanth Mandati
  • Prashant Misra
  • Bulusu V. SaradaEmail author
  • Tata Narasinga RaoEmail author
Review Paper
  • 82 Downloads

Abstract

Solar photovoltaic (PV) technology is a reliable and environmental friendly alternative for electricity generation. There are a number of solar PV technologies at different maturity levels, ranging from well-established and commercialized silicon PV to still in conceptual and R&D phase quantum dot and organic/polymer solar cells. Chalcopyrite solar cells, named so because of the thin absorber layer of Cu-based chalcopyrite materials used in these cells, are one of the frontrunners in thin-film PV technology owing to their tunable direct bandgap, large absorption coefficient and long-term stability. Among all Cu-chalcopyrite materials, copper indium selenide (CISe) and copper indium gallium selenide (CIGSe) are most suitable for use as light-absorbing layer. Although CISe and CIGSe absorber-based PV modules are being produced commercially for several years now, the technology is yet to mature fully as there is still scope for improvement in efficiency, manufacturability and cost reduction. The present article discusses the status of CISe-/CIGSe-based thin-film PV technology while primarily focusing on the absorber material. Different vacuum and non-vacuum methods for fabricating these materials are reviewed along with their merits/demerits and suitability to large-scale production. Current status of commercial maturity for CIGSe PV is discussed while providing general process details of selected industrial manufacturers. Existing bottlenecks for this technology are deliberated, and future directions for improvement in laboratory-scale efficiency and manufacturability are outlined.

Keywords

Chalcopyrite Copper indium selenide Copper indium gallium selenide Thin-film solar cells 

References

  1. 1.
    Renewables 2017 Global Status Report (2017).Google Scholar
  2. 2.
    Dharmadasa I M, Advances in Thin-Film Solar Cells, Pan Stanford Publishing, Singapore (2013).Google Scholar
  3. 3.
    Jäger-Waldau A, PV Status Report 2017 (2017).Google Scholar
  4. 4.
    Energy Technology Perspectives 2017 (2017).Google Scholar
  5. 5.
    Abou-Ras D, Kirchartz T, and Rau U, Wiley-VCH Verlag GmbH & Co. KGaA, in Advanced Characterization Techniques for Thin Film Solar Cells, Weinheim (2011).Google Scholar
  6. 6.
    Green M A, Hishikawa Y, Warta W, Dunlop E D, Levi D H, Hohl-Ebinger J, and Ho-Baillie A W, Prog Photovolt Res Appl 25 (2017) 668.Google Scholar
  7. 7.
    Green M A, Emery K, Hishikawa Y, Warta W, and Dunlop E D, Prog Photovolt Res Appl 22 (2014) 1.Google Scholar
  8. 8.
    Polman A, Knight M, Garnett E C, Ehrler B, and Sinke W C, Science 352 (2016) 4424.Google Scholar
  9. 9.
    Chang J C, Guo J W, Hsieh T P, Yang M R, Chiou D W, Cheng H T, Yeh C L, Li C C, and Chu S Y, Surf Coat Technol 231 (2013) 573.Google Scholar
  10. 10.
    Scofield J H, Duda A, Albin D, Ballard B L, and Predecki P K, Thin Solid Films 260 (1995) 26.Google Scholar
  11. 11.
    Matson R J, Jamjoum O, Buonaquisti A D, Russell P E, Kazmerski L L, Sheldon P, and Ahrenkiel R K, Sol Cells 11 (1984) 301.Google Scholar
  12. 12.
    Moons E, Engelhard T, and Cahen D, J Electron Mater 22 (1993) 275.Google Scholar
  13. 13.
    Hoffman R A, Lin J C, and Chambers J P, Thin Solid Films 206 (1991) 230.Google Scholar
  14. 14.
    Gordillo G, Grizález M, and Hernandez L C, Sol Energy Mater Sol Cells 51 (1998) 327.Google Scholar
  15. 15.
    Martínez M A, and Guillén C, Surf Coat Technol 110 (1998) 62.Google Scholar
  16. 16.
    Assmann L, Bernède J C, Drici A, Amory C, Halgand E, and Morsli M, Appl Surf Sci 246 (2005) 159.Google Scholar
  17. 17.
    Boosagulla D, Mandati S, Allikayala R, and Sarada B V, ECS J Solid State Sci Technol 7 (2018) P440.Google Scholar
  18. 18.
    Chen W S, Stewart J M, Stanbery B J, Devaney W E, and Mickelsen R A, in 19th IEEE Photovoltaic Specialists Conference, New Orleans (1987), pp 1445.Google Scholar
  19. 19.
    Nakada T, Furumi K, and Kunioka A, IEEE Trans Electron Devices 46 (1999) 2093.Google Scholar
  20. 20.
    Ennaoui A, Siebentritt S, Lux-Steiner M C, Riedl W, and Karg F, Sol Energy Mater Sol Cells 67 (2001) 31.Google Scholar
  21. 21.
    Negami T, Aoyagi T, Satoh T, Shimakawa S, Hayashi S, and Hashimoto Y, in Proceedings of 29th IEEE Photovoltaic Specialist Conference, New Orleans, USA (2002), p 656.Google Scholar
  22. 22.
    D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla, and A. N. Tiwari, J Appl Phys 97 (2005) 084908.Google Scholar
  23. 23.
    Abou-Ras D, Kostorz G, Strohm A, Schock H-W, and Tiwari A N, J Appl Phys 98 (2005) 123512.Google Scholar
  24. 24.
    Konagai M, Ohtake Y, and Okamoto T, in Materials Research Society Symposia Proceedings (1996), p 153.Google Scholar
  25. 25.
    Yamada A, Chaisitsak S, Othake Y, and Konagai M, in Proceedings of 2nd World Conference of Photovoltaic Energy Conversion Vienna, Austria (1998), p 1177.Google Scholar
  26. 26.
    Jackson P, Hariskos D, Wuerz R, Wischmann W, and Powalla M, Phys Status Solidi RRL 8 (2014) 219.Google Scholar
  27. 27.
    Jackson D H P, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, and Powalla M, Prog Photovolt Res Appl 19 (2011) 894.Google Scholar
  28. 28.
    Misra P, Ganeshan V, and Agrawal N, J Alloys Compd 725 (2017) 60.Google Scholar
  29. 29.
    Chamberlin R R, and Skarman J S, Solid State Electron 9 (1966) 819.Google Scholar
  30. 30.
    Ramanujam J, and Singh U P, Energy Environ Sci 10 (2017) 1306.Google Scholar
  31. 31.
    Zhang S B, Wei S-H, Zunger A, and Katayama-Yoshida H, Phys Rev B 57 (1998) 9642.Google Scholar
  32. 32.
    Shafarman W N, and Stolt L, in Handbook of Photovoltaic Science and Engineering, (eds) Luque A, and Hegedus S, Wiley, London (2003), pp 567.Google Scholar
  33. 33.
    Noufi R, Axton R, Herrington C, and Deb S, Appl Phys Lett 45 (1984) 668.Google Scholar
  34. 34.
    Neumann H, and Tomlinson R D, Sol Cells 28 (1990) 301.Google Scholar
  35. 35.
    Herberholz R, Rau U, Schock H W, Haalboom T, Gödecke T, Ernst F, Beilharz C, Benz K W, and Cahen D, Eur Phys J Appl Phys 6 (1999) 131.Google Scholar
  36. 36.
    Schroeder D J, and Rockett A A, J Appl Phys 82 (1997) 4982.Google Scholar
  37. 37.
    Wei S H, Zhang S B, and Zunger A, Appl Phys Lett 72 (1998) 3199.Google Scholar
  38. 38.
    Niles D W, Ramanathan K, Hasoon F, Noufi R, Tielsch B J, and Fulghum J E, J Vac Sci Technol A 15 (1997) 3044.Google Scholar
  39. 39.
    Oikkonen L E, Ganchenkova M G, Seitsonen A P, and Nieminen R M, J Appl Phys 114 (2013) 083503.Google Scholar
  40. 40.
    Shin D, Kim J, Gershon T, Mankad R, Hopstaken M, Guha S, Ahn B T, and Shin B, Sol Energy Mater Sol Cells 157 (2016) 695.Google Scholar
  41. 41.
    Ruckh M, Schmid D, Kaiser M, Schäffler R, Walter T, and Schock H, Sol Energy Mater Sol Cells 41 (1996) 335.Google Scholar
  42. 42.
    Wei S H, Zhang S B, and Zunger A, J Appl Phys 85 (1999) 7214.Google Scholar
  43. 43.
    Granath K, Bodegård M, and Stolt L, Sol Energy Mater Sol Cells 60 (2000) 279.Google Scholar
  44. 44.
    Salome P M, Hultqvist A, Fjällström V, Edoff M, Aitken B, Zhang K, Fuller K, and Williams C K, IEEE J Photovolt 4 (2014) 1659.Google Scholar
  45. 45.
    Hartmann M, Schmidt M, Jasenek A, Schock H W, Kessler F, Herz K, and Powalla M, in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference2000 (Cat. No. 00CH37036) (2000), pp 638.Google Scholar
  46. 46.
    Kazmerski L, Hallerdt M, Ireland P, Mickelsen R, and Chen W, J Vac Sci Technol A Vac Surf Films 1 (1983) 395.Google Scholar
  47. 47.
    Rincón C, and González J, Sol Cells 16 (1986) 357.Google Scholar
  48. 48.
    Alonso M I, Garriga M, Rincón C D, Hernández E, and León M, Appl Phys A 74 (2002) 659.Google Scholar
  49. 49.
    Hirai Y, Kurokawa Y, and Yamada A, Jpn J Appl Phys 53 (2013) 012301.Google Scholar
  50. 50.
    Repins I, Glynn S, Duenow J, Coutts T, Metzger W, and Contreras M, Required Materials Properties for High-Efficiency Cigs Modules: Preprint (2009).Google Scholar
  51. 51.
    Huang C H, Lin C P, and Jan Y L, Semicond Sci Technol 31 (2016) 085004.Google Scholar
  52. 52.
    Lindahl J, Zimmermann U, Szaniawski P, Torndahl T, Hultqvist A, Salome P, Platzer-Bjorkman C, and Edoff M, IEEE J Photovolt 3 (2013) 1100.Google Scholar
  53. 53.
    Sim J K, Ashok K, and Lee C R, Met Mater Int 19 (2013) 303.Google Scholar
  54. 54.
    Kamada R, Yagioka T, Adachi S, Handa A, Tai K F, Kato T, and Sugimoto H, in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (2017), pp 1.Google Scholar
  55. 55.
    Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, and Powalla M, Phys Status Solidi (RRL) Rapid Res Lett 10 (2016) 583.Google Scholar
  56. 56.
    Shafarman W N, and Zhu J, Thin Solid Films 361 (2000) 473.Google Scholar
  57. 57.
    Mickelsen R, and Chen W S, Appl Phys Lett 36 (1980) 371.Google Scholar
  58. 58.
    Binetti S, Garattini P, Mereu R, Le Donne A, Marchionna S, Gasparotto A, Meschia M, Pinus I, and Acciarri M, Semicond Sci Technol 30 (2015) 105006.Google Scholar
  59. 59.
    Gabor A M, Tuttle J R, Albin D S, Contreras M A, Noufi R, and Hermann A M, Appl Phys Lett 65 (1994) 198.Google Scholar
  60. 60.
    Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, and Uhl A R, Nat Mater 10 (2011) 857.Google Scholar
  61. 61.
    Gabor A, Tuttle J, Bode M, Franz A, Tennant A, Contreras M, Noufi R, Jensen D, and Hermann A, Sol Energy Mater Sol Cells 4142 (1996) 247.Google Scholar
  62. 62.
    Jackson P, Würz R, Rau U, Mattheis J, Kurth M, Schlötzer T, Bilger G, and Werner J H, Prog Photovolt Res Appl 15 (2007) 507.Google Scholar
  63. 63.
    Mickelsen R, Chen W, Stanbery B, Dursch H, Stewart J, Hsiao Y, and Devaney W, in Proceedings of the 16th IEEE Photovoltaic Specialists Conference, IEEE, New York (1982), p 781.Google Scholar
  64. 64.
    Stolt L, Hedström J, and Sigurd D, J Vac Sci Technol A Vac Surf Films 3 (1985) 403.Google Scholar
  65. 65.
    Powalla M, Voorwinden G, and Dimmler B, in Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, p 1270.Google Scholar
  66. 66.
    Nishitani M, Negami T, and Wada T, Thin Solid Films 258 (1995) 313.Google Scholar
  67. 67.
    Negami T, Nishitani M, Kohara N, Hashimoto Y, and Wada T, Mater Res Soc Symp P 426 (1996) 267.Google Scholar
  68. 68.
    Chen G S, Yang J C, Chan Y C, Yang L C, and Huang W, Sol Energy Mater Sol Cells 93 (2009) 1351.Google Scholar
  69. 69.
    Moon J H, Choi H W, Kim K H, Kim J H, and Park S J, J Nanosci Nanotechnol 12 (2012) 656.Google Scholar
  70. 70.
    Xue M, Liu J J, Huang Y Q, Han K K, Hu J X, Cheng K, Wu S X, and Du Z L, Mater Lett 152 (2015) 240.Google Scholar
  71. 71.
    Knowles A, Oumous H, Carter M, and Hill R, Semicond Sci Technol 3 (1988) 1143.Google Scholar
  72. 72.
    Hermann A M, Mansour M, Badri V, Pinkhasov B, Gonzales C, Fickett F, Calixto M E, Sebastian P J, Marshall C H, and Gillespie T J, Thin Solid Films 361362 (2000) 74.Google Scholar
  73. 73.
    Koo J, Kim S C, Park H, and Kim W K, Thin Solid Films 520 (2011) 1484.Google Scholar
  74. 74.
    Li W, Sun Y, Liu W, and Zhou L, Sol Energy 80 (2006) 191.Google Scholar
  75. 75.
    Liang H F, Avachat U, Liu W, van Duren J, and Le M, Solid State Electron 76 (2012) 95.Google Scholar
  76. 76.
    Han J, Koo J, Jung H, and Kim W K, J Alloys Compd 552 (2013) 131.Google Scholar
  77. 77.
    Mooney G D, Hermann A M, Tuttle J R, Albin D S, and Noufi R, Appl Phys Lett 58 (1991) 2678.Google Scholar
  78. 78.
    Dhere N, and Lynn K, Sol Energy Mater Sol Cells 4142 (1996) 271.Google Scholar
  79. 79.
    Gupta A, and Isomura S, Sol Energy Mater Sol Cells 53 (1998) 385.Google Scholar
  80. 80.
    Hanket G M, Shafarman, W N, McCandless B E, and Birkmire R W, J Appl Phys 102 (2007) 074922.Google Scholar
  81. 81.
    Jensen C L, Tarrant D E, Ermer J H, and Pollock G A, in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference1993 (Cat. No.93CH3283-9) (1993), pp 577.Google Scholar
  82. 82.
    Dullweber T, Lundberg O, Malmström J, Bodegård M, Stolt L, Rau U, Schock H-W, and Werner J H, Thin Solid Films 387 (2001) 11.Google Scholar
  83. 83.
    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, and Matsubara K, Prog Photovolt Res Appl 18 (2010) 453.Google Scholar
  84. 84.
    Huang P C, Sung C C, Chen J H, Hsiao R C, and Hsu C Y, J Mater Sci Mater Electron 29 (2018) 1444.Google Scholar
  85. 85.
    Kim J, Lee H-S, and Park N-M, in SPIE Solar Energy + Technology, SPIE (2013), p 6.Google Scholar
  86. 86.
    Park N-M, Lee H S, Cho D-H, Chung Y-D, Kim K-H, Lee K-S, and Kim J, Prog Photovolt Res Appl 20 (2012) 899.Google Scholar
  87. 87.
    Guenoun K, Djessas K, and Massé G, J Appl Phys 84 (1998) 589.Google Scholar
  88. 88.
    Venkatachalam M, Kannan M D, Jayakumar S, Balasundaraprabhu R, and Muthukumarasamy N, Thin Solid Films 516 (2008) 6848.Google Scholar
  89. 89.
    Chen J Y, Shen H L, Zhai Z H, Li J Z, Wang W, Shang H R, and Li Y F, J Phys D Appl Phys 49 (2016) 495601.Google Scholar
  90. 90.
    Li L L, Ding T Z, He J, and Han L, J Funct Mater Devices 17 (2011) 500.Google Scholar
  91. 91.
    Yu Z, JiaDa W, and Ning X, Mater Res Express 3 (2016) 106402.Google Scholar
  92. 92.
    Islam M M, Sakurai T, Ishizuka S, Yamada A, Shibata H, Sakurai K, Matsubara K, Niki S, and Akimoto K, J Cryst Growth 311 (2009) 2212.Google Scholar
  93. 93.
    Niki S, Yamada A, Hunger R, Fons P J, Iwata K, Matsubara K, Nishio A, and Nakanishi H, J Cryst Growth 237 (2002) 1993.Google Scholar
  94. 94.
    Hibberd C J, Chassaing E, Liu W, Mitzi D B, Lincot D, and Tiwari A N, Prog Photovolt Res Appl 18 (2010) 434.Google Scholar
  95. 95.
    Lincot J F G D, Taunier S, Guimard D, Sicx-Kurdi J, Chaumont A, Roussel O, Ramdani O, Hubert C, Fauvarque J P, Bodereau N, Parissi L, Panheleux P, Fanouillere P, Naghavi N, Grand P P, Benfarah M, Mogensen P, and Kerrec O, Sol Energy 77 (2004) 725.Google Scholar
  96. 96.
    Bhattacharya R N, J Electrochem Soc 130 (1983) 2040.Google Scholar
  97. 97.
    Hodes G, Engelhard T, Cahen D, Kazmerski L L, and Herrington C R, Thin Solid Films 128 (1985) 93.Google Scholar
  98. 98.
    Herrero J, and Ortega J, Sol Energy Mater 20 (1990) 53.Google Scholar
  99. 99.
    Massaccesi S, Sanchez S, and Vedel J, J Electroanal Chem 412 (1996) 95.Google Scholar
  100. 100.
    Lincot D, Thin Solid Films 487 (2005) 40.Google Scholar
  101. 101.
    Bhattacharya W B R N, Hiltner J F, and Sites J R, Appl Phys Lett 75 (1999) 1431.Google Scholar
  102. 102.
    Bhattacharya R N, Oh M-K, and Kim Y, Sol Energy Mater Sol Cells 98 (2012) 198.Google Scholar
  103. 103.
    Bhattacharya R N, and Fernandez A M, Sol Energy Mater Sol Cells 76 (2003) 331.Google Scholar
  104. 104.
    Bhattacharya R N, Sol Energy Mater Sol Cells 113 (2013) 96.Google Scholar
  105. 105.
    Broussillou C, Viscogliosi C, Rogee A, Angle S, Grand P P, Bodnar S, and Debauche C, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (2015), pp 1.Google Scholar
  106. 106.
    Aksu S, Pethe S, Kleiman-Shwarsctein A, Kundu S, and Pinarbasi M, in 38th IEEE Photovotaics Specialists Conference (2012), p 003092.Google Scholar
  107. 107.
    Mandati S, Sarada B V, Dey S R, and Joshi S V, in Semiconductors: Growth and characterization, (ed) Inguanta R, IntechOpen, London (2018), pp 109.Google Scholar
  108. 108.
    Mandati S, Phys Rev D 82 (2015) 1.Google Scholar
  109. 109.
    Mandati S, Sarada B V, Dey S R, and Joshi S V, J Renew Sustain Energy 5 (2013) 031602.Google Scholar
  110. 110.
    Mandati S, Sarada B V, Dey S R, and Joshi S V, Electron Mater Lett 11 (2015) 618.Google Scholar
  111. 111.
    Mandati S, Sarada B V, Dey S R, and Joshi S V, J Electrochem Soc 160 (2013) D173.Google Scholar
  112. 112.
    Mandati S, Sarada B V, Dey S R, and Joshi S V, Mater Lett 118 (2014) 158.Google Scholar
  113. 113.
    Mandati S, Sarada B V, Dey S R, and Joshi S V, ACS Sustain Chem Eng (in press) (2018).  https://doi.org/10.1021/acssuschemeng.8b01840.
  114. 114.
    Mandati S, Sarada B V, Dey S R, and Joshi S V, in SemiconductorsGrowth and Characterization, (eds) Inguanta R, and Sunseri C, InTech, Rijeka (2018), p Ch. 06.Google Scholar
  115. 115.
    Bi J, Yao L, Ao J, Gao S, Sun G, He Q, Zhou Z, Sun Y, and Zhang Y, J Power Sour 326 (2016) 211.Google Scholar
  116. 116.
    Mandati S, Sarada B V, Dey S R, and Joshi S V, J Power Sour 273 (2015) 149.Google Scholar
  117. 117.
    Jadhav H S, Kalubarme R S, Ahn S, Yun J H, and Park C-J, Appl Surf Sci 268 (2013) 391.Google Scholar
  118. 118.
    Valdés M, and Vázquez M, J Solid State Electrochem 16 (2012) 3825.Google Scholar
  119. 119.
    Liu F, Huang C, Lai Y, Zhang Z, Li J, and Liu Y, J Alloys Compd 509 (2011) L129.Google Scholar
  120. 120.
    Bi J, Ao J, Gao Q, Zhang Z, Sun G, He Q, Zhou Z, Sun Y, and Zhang Y, ACS Appl Mater Interfaces 9 (2017) 18682.Google Scholar
  121. 121.
    Kapur V K, Bansal A, Le P, and Asensio O I, Thin Solid Films 431432 (2003) 53.Google Scholar
  122. 122.
    Panthani M G, Akhavan V, Goodfellow B, Schmidtke J P, Dunn L, Dodabalapur A, Barbara P F, and Korgel B A, J Am Chem Soc 130 (2008) 16770.Google Scholar
  123. 123.
    Qijie G, Ford G M, Rakesh A, and Hillhouse H W, Prog Photovolt Res Appl 21 (2013) 64.Google Scholar
  124. 124.
    McLeod S M, Charles J, Nathaniel J C, and Rakesh A, Prog Photovolt Res Appl 23 (2015) 1550.Google Scholar
  125. 125.
    Brown G, Stone P, Woodruff J, Cardozo B, and Jackrel D, in 2012 38th IEEE Photovoltaic Specialists Conference (2012), pp 003230.Google Scholar
  126. 126.
    Todorov T K, Gunawan O, Gokmen T, and Mitzi D B, Prog Photovolt Res Appl 21 (2013) 82.Google Scholar
  127. 127.
    Kamada R, Yagioka T, Adachi S, Handa A, Tai K F, Kato T, and Sugimoto H, in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (2016), pp 1287.Google Scholar
  128. 128.
    Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, and Powalla M, Phys Status Solidi (RRL) Rapid Res Lett 9 (2015) 28.Google Scholar
  129. 129.
    Yin G, Brackmann V, Hoffmann V, and Schmid M, Sol Energy Mater Sol Cells 132 (2015) 142.Google Scholar
  130. 130.
    Duchatelet A, Letty E, Jaime-Ferrer S, Grand P P, Mollica F, and Naghavi N, Sol Energy Mater Sol Cells 162 (2017) 114.Google Scholar
  131. 131.
    Hong J, Lim D, Eo Y-J, and Choi C, Appl Surf Sci 432 (2018) 250.Google Scholar
  132. 132.
    Kobayashi T, Kao Z J L, and Nakada T, Sol Energy Mater Sol Cells 143 (2015) 159.Google Scholar
  133. 133.
    Bauer A, Sharbati S, and Powalla M, Sol Energy Mater Sol Cells 165 (2017) 119.Google Scholar
  134. 134.
    Taizo K, Hiroshi Y, and Tokio N, Prog Photovolt Res Appl 22 (2014) 115.Google Scholar
  135. 135.
    Romanyuk Y E, Hagendorfer H, Stücheli P, Fuchs P, Uhl A R, Sutter‐Fella C M, Werner M, Haass S, Stückelberger J, Broussillou C, and Grand P P, Adv Funct Mater 25 (2015) 12.Google Scholar
  136. 136.
    Feurer T, Reinhard P, Avancini E, Bissig B, Löckinger J, Fuchs P, Carron R, Weiss T P, Perrenoud J, Stutterheim S, and Buecheler S, Prog Photovolt 25 (2017) 645.Google Scholar
  137. 137.
  138. 138.
    https://solibro-solar.com/en/. Last accessed May 23, 2018.
  139. 139.
    https://flisom.com/products/. Last accessed May 22, 2018.
  140. 140.
    http://www.globalsolar.com/. Last accessed May 23, 2018.
  141. 141.
    http://www.ascentsolar.com/. Last accessed May 23, 2018.
  142. 142.
  143. 143.
    http://www.avancis.de/en/. Last accessed May 23, 2018.
  144. 144.
    http://miasole.com/products/. Last accessed May 23, 2018.
  145. 145.
    http://midsummer.se/applications. Last accessed May 23, 2018.
  146. 146.
    http://www.ips.co.kr/eng_main/sub3-6.php. Last accessed May 23, 2018.
  147. 147.
    http://www.hulket.com/. Last accessed May 23, 2018.
  148. 148.
    http://www.stion.com/products/. Last accessed May 23, 2018.
  149. 149.
    http://solopower.com/products/. Last accessed May 23, 2018.
  150. 150.
    Yin W J, Yang J H, Kang J, Yan Y F, and Wei S H, J Mater Chem A A 3 (2015) 8926.Google Scholar
  151. 151.
    Guchhait A, Dewi H A, Leow S W, Wang H, Han G, Suhaimi F B, Mhaisalkar S, Wong L H, and Mathews N, ACS Energy Lett 2 (2017) 807.Google Scholar
  152. 152.
    Philipps S, and Warmuth W, Photovoltaics Report, Fraunhofer ISE, updated: 26 February (2018).Google Scholar
  153. 153.
    Yang J, Jiang Y L, Li L J, and Gao M Z, Appl Surf Sci 421 (2017) 446.Google Scholar
  154. 154.
    Zeng X B, Wen X X, Sun X H, Liao W G, and Wen Y Y, Thin Solid Films 605 (2016) 257.Google Scholar
  155. 155.
    Nakagawara O, Kishimoto Y, Seto H, Koshido Y, Yoshino Y, and Makino T, Appl Phys Lett 89 (2006) 091904.Google Scholar
  156. 156.
    Delahoy A E, and Guo S, in Handbook of Photovoltaic Science and Engineering, (eds) Luque A, and Hegedus S, Wiley, London (2011).Google Scholar
  157. 157.
    Peike C, Hädrich I, Weiß K-A, and Dürr I, Photovolt Int 19(2013) 85.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Center for Solar Energy MaterialsInternational Advanced Research Center for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Personalised recommendations