Advertisement

CVD Diamond

  • Sajad Hussain DinEmail author
  • M. A. Shah
  • N. A. Sheikh
  • M. Mursaleen Butt
Review Paper
  • 120 Downloads

Abstract

Diamond has the most extreme properties in mechanical, chemical and physical domain. There are many methods to manufacture synthetic diamond. Diamond layers can be deposited on various materials by many processes. The most robust and preferred method is chemical vapour deposition. A variety of researches have been performed on CVD coatings, and a range of developments has come forth starting from initial publications to the latest results. The process parameters of different CVD techniques have been discussed with technical limitations. Flow rate, applied power, increased pressure and temperature range are important parameters for the deposition of CVD diamond.

Keywords

Chemical vapor deposition Hot filament Plasma arrangement 

References

  1. 1.
    DeVries R C, Annu Rev Mater Sci 17 (1987) 161.CrossRefGoogle Scholar
  2. 2.
    Neuhaus A, Angewandte Chemie 66 (1954) 525.CrossRefGoogle Scholar
  3. 3.
    Angus J C, Diam Relat Mater 49 (2014) 77.CrossRefGoogle Scholar
  4. 4.
    Bridgman P W, Sci Am 193 (1955) 42.CrossRefGoogle Scholar
  5. 5.
    Von Bolton W, Z Elektrochem 17 (1911) 971.Google Scholar
  6. 6.
    Schmellenmeier H Z, Z Phys Chem DDR 9 (1956) 349.Google Scholar
  7. 7.
    Lander J J, and Morrison J, Surf Sci 4 (1966) 241.CrossRefGoogle Scholar
  8. 8.
    Angus J C, Will H A, and Stanko W S, J Appl Phys 39 (1968) 2915.CrossRefGoogle Scholar
  9. 9.
    Poferl D J, Gardner N C, and Angus J C, J Appl Phys 44 (1973) 1428.CrossRefGoogle Scholar
  10. 10.
    Lightowlers E C, and Collins A T, Phys Rev A 151 (1966) 685.CrossRefGoogle Scholar
  11. 11.
    Chauhan S P, Angus J C, and Gardner N C, J Appl Phys 47 (1976) 4746.CrossRefGoogle Scholar
  12. 12.
    Forgac J M, and Angus J C, Ind Eng Chem Fundam 18 (1979) 416.CrossRefGoogle Scholar
  13. 13.
    M. K. Murayama, S. Kojima, K. Uchida, “Uniform deposition of diamond films using a flat flame stabilized in the stagnation‐point flow”, J. Appl. Phys. 69 (1991) 7924.M. Murakawa, S. Takeuchi, Surf. Coat. Technol. 54–55 (1992) 403.Google Scholar
  14. 14.
    Nesladek M, Diam Relat Mater 2 (1993) 357.CrossRefGoogle Scholar
  15. 15.
    Norgard C, and Matthews A, Diam Relat Mater 5 (1996) 332.CrossRefGoogle Scholar
  16. 16.
    Okazaki H, Yoshida R, Muro T, Nakamura T, Wakita T, Muraoka Y, Hirai M, Kato H, Yamasaki S, Takano Y, Ishii S, Oguchi T, and Yokoya T, Appl Phys Lett 98 (2011) 082107.CrossRefGoogle Scholar
  17. 17.
    Okumura Y, Kanayama K, and Shogaki K, Combust Flame 157 (2010) 1052.CrossRefGoogle Scholar
  18. 18.
    Ohtake N, and Yoshikawa M, J Electrochem Soc 137 (1990) 717.CrossRefGoogle Scholar
  19. 19.
    Aleksov A, Vescan A, Kunze M, Gluche P, Ebert W, Kohn E, Bergmaier A, and Dollinger G, Diam Relat Mater 8 (1999) 941.CrossRefGoogle Scholar
  20. 20.
    Almeida F A, Amaral M, Oliveira F J, and Silva R F, Diam Relat Mater 15 (2006) 2029.CrossRefGoogle Scholar
  21. 21.
    Ando Y, Tobe S, Saito T, Sakurai J, Tahara H, and Yoshikawa T, Thin Solid Films 457 (2004) 217.CrossRefGoogle Scholar
  22. 22.
    Ando Y, Tobe S, and Tahara H, Vacuum 83 (2009) 102.CrossRefGoogle Scholar
  23. 23.
    Ashfold M N R, May P W, and Rego C A, Chem Soc Rev 23 (1994) 21.CrossRefGoogle Scholar
  24. 24.
    Bachmann P K, Leers D, and Lydtin H, Diam Relat Mater 1 (1991) 1.CrossRefGoogle Scholar
  25. 25.
    Pleuler E, Wild C, Funer M, and Koidl P, Diam Relat Mater 11 (2002) 467.CrossRefGoogle Scholar
  26. 26.
    Polini R, Barletta M, and Cristofanilli G, Thin Solid Films 519 (2010) 1629.CrossRefGoogle Scholar
  27. 27.
    Prijaya N A, Angus J C, and Bachmann P K, Diam Relat Mater 3 (1994) 129.CrossRefGoogle Scholar
  28. 28.
    Rakha S A, Xintai Z, Zhu D, and Guojun Y, Curr Appl Phys 10 (2010) 171.CrossRefGoogle Scholar
  29. 29.
    Rosenkranz B, and Bettmer J, Trends Anal Chem 19 (2000) 138.CrossRefGoogle Scholar
  30. 30.
    Sawabe A, Yasuda H, Inuzuka T, and Suzuki K, Appl Surf Sci 33–34 (1988) 539.CrossRefGoogle Scholar
  31. 31.
    Schauer S N, Flemish J R, Wittstruck R, Landstrass M I, and Plano M A, Appl Phys Lett 64 (1994) 28.CrossRefGoogle Scholar
  32. 32.
    Schmitt M, and Paulmier D, Tribol Int 37 (2004) 317.CrossRefGoogle Scholar
  33. 33.
    Schafer L, Hofer M, and Kroger R, Thin Solid Films 515 (2006) 1017.CrossRefGoogle Scholar
  34. 34.
    Kee R J, and Miller J A, Phys D 12 (1984) 198.CrossRefGoogle Scholar
  35. 35.
    Sciortino S, Lagomarsino S, Pieralli F, Borchi E, and Galvanetto E, Diam Relat Mater 11 (2002) 573.CrossRefGoogle Scholar
  36. 36.
    Seely J F, and Harris E G, Phys Rev A 7 (1973) 1064.CrossRefGoogle Scholar
  37. 37.
    Shin S D, Hwang N M, and Kim D Y, Diam Relat Mater 11 (2002) 1337.CrossRefGoogle Scholar
  38. 38.
    Kamo M, Sato Y, Matsumoto S, and Setaka N, J Cryst Growth 62 (1983) 642.CrossRefGoogle Scholar
  39. 39.
    Khan M H, Liu H K, Sun X, Yamauchi Y, Bando Y, Golberg D, and Huang Z, Charact Appl 20 (2017) 611.Google Scholar
  40. 40.
    Esteves L M, Oliveira H A, and Passos F B, J Ind Eng Chem 65 (2018) 1.CrossRefGoogle Scholar
  41. 41.
    Gupta M, Singh V, Kumar S, Kumar S, Dilbaghi N, AND Said Z, J Clean Prod 190 (2018) 169.CrossRefGoogle Scholar
  42. 42.
    Mermoux M, Chang S, Girard H A, and Arnault J-C, Diam Relat Mater 87 (2018) 248.CrossRefGoogle Scholar
  43. 43.
    Liang G, and Mudawar I, Int J Heat Mass Transf 128 (2019) 892.CrossRefGoogle Scholar
  44. 44.
    Khan M H, Liu H K, Sun X, Yamauchi Y, Bando Y, Golberg D, and Huang Z, Mater Today 20 (2017) 611.CrossRefGoogle Scholar
  45. 45.
    Tokunaga T, Ohno M, and Matsuura K, J Mater Sci Technol 34 (2018) 1119.CrossRefGoogle Scholar
  46. 46.
    Zhai W, Srikanth N, Kong L B, and Zhou K, Carbon 119 (2017) 150.CrossRefGoogle Scholar
  47. 47.
    Guo B, Wu M, Zhao Q, Liu H, and Zhang J, Ceram Int 44 (2018) 17333.CrossRefGoogle Scholar
  48. 48.
    Zaitsev A M, Moe K S, and Wang W, Diam Relat Mater 88 (2018) 237.CrossRefGoogle Scholar
  49. 49.
    Silva F, Bonnin X, Scharpf J, and Pasquarelli A, Diam Relat Mater 19 (2010) 397.CrossRefGoogle Scholar
  50. 50.
    Spitsyn B V, Bouilov L L, and Alexenko A E, Braz J Phys 30 (2000) 471.CrossRefGoogle Scholar
  51. 51.
    Suzuki K, Sawabe A, and Inuzuka T, Jpn J Appl Phys 29 (1990) 153.CrossRefGoogle Scholar
  52. 52.
    Tan W, and Grotjohn T A, Diam Relat Mater 4 (1995) 1145.CrossRefGoogle Scholar
  53. 53.
    Tendero C, Tixier C, Tristant P, Desmaison J, and Leprince P, Spectrochim Acta B 61 (2006) 2.Google Scholar
  54. 54.
    Schwander M, and Partes K, Diam Relat Mater 20 (2011) 1287.Google Scholar
  55. 55.
    Tsubouchi N, Mokuno Y, Chayahara A, and Shikata S, Diam Relat Mater 19 (2010) 1259.CrossRefGoogle Scholar
  56. 56.
    Tzeng Y, Phillips R, Cutshaw C, Srivinyunon T, Loo B H, and Wang P, Appl Phys Lett 58 (1991) 2645.CrossRefGoogle Scholar
  57. 57.
    Ueda K, and Kasu M, Diam Relat Mater 18 (2009) 121.CrossRefGoogle Scholar
  58. 58.
    Srikanth V V S S, Jiang X, and Kopf A, Surf Coat Technol 204 (2010) 2362.CrossRefGoogle Scholar
  59. 59.
    Din S H, Shah M A, and Sheikh N A, Surf Toporaphy Metrol Prop IOP 5 (2017) 1.Google Scholar
  60. 60.
    Vollertsen F, Partes K, and Schubnov A, Prod Eng 4 (2010) 9.CrossRefGoogle Scholar
  61. 61.
    Wang Z L, Lu C, Li J J, and Gu C Z, Appl Surf Sci 255 (2009) 9522.CrossRefGoogle Scholar
  62. 62.
    Wang S, Chen G, and Yang F, Thin Solid Films 517 (2009) 3559.CrossRefGoogle Scholar
  63. 63.
    Wang T, Xiang L, Shi W, and Jiang X, Surf Coat Technol 205 (2011) 3027.CrossRefGoogle Scholar
  64. 64.
    Werner M, and Locher R, Rep Prog Phys 61 (1998) 1665.CrossRefGoogle Scholar
  65. 65.
    Xie Z, Zhou Y, He X, Gao Y, Park J, Ling H, Jiang L, and Lu Y, Cryst Growth Des 10 (2010) 1762.CrossRefGoogle Scholar
  66. 66.
    Xie Z Q, He X N, Hu W, Guillemet T, Park J B, Zhou Y S, Bai J, Gao Y, Zeng X C, Jiang L, and Lu Y F, Cryst Growth Des 10 (2010) 4928.CrossRefGoogle Scholar
  67. 67.
    Baik Y J, Lee J K, Lee W S, and Eun K Y, Thin Solid Films 341 (1999) 202.CrossRefGoogle Scholar
  68. 68.
    Bardos L, Barankova H, Lebedev Yu A, Nyberg T, and Berg S, Diam Relat Mater 6 (1997) 224.CrossRefGoogle Scholar
  69. 69.
    Berghaus J O, Meunier J L, and Gitzhofer F, Int J Refract Met Hard Mater 16 (1998) 201.CrossRefGoogle Scholar
  70. 70.
    Berthou H, Faure C, Hanni W, and Perret A, Diam Relat Mater 8 (1999) 636.CrossRefGoogle Scholar
  71. 71.
    Bjorkman H, Rangsten P, and Hjort K, Sens Actuators 78 (1999) 41.CrossRefGoogle Scholar
  72. 72.
    Bundy F P, Hall H T, Strong H M, and Wentorf R H, Nature 176 (1955) 51.CrossRefGoogle Scholar
  73. 73.
    Jonkers J, de Regt J M, van der Mullen J A M, Vos H P C, de Groote F P J, and Timmermans E A H, Spectrochim Acta B 51 (1996) 1385.CrossRefGoogle Scholar
  74. 74.
    Chattopadhyay A, Sarangi S K, Chattopadhyay A K, Appl Surf Sci 255 (2008) 1661.CrossRefGoogle Scholar
  75. 75.
    Chae K W, Baik Y J, Park J K, Lee W S, Diam Relat Mater 19 (2010) 1168.CrossRefGoogle Scholar
  76. 76.
    Chen G C, Li B, Li H, Lan H, Dai F W, Xue Q J, Han X Q, Hei L F, Song J H, Li C M, Tang W Z, and Lu F X, Diam Relat Mater 19 (2010) 1078.CrossRefGoogle Scholar
  77. 77.
    Raghuveer M S, Yoganand S N, Jagannadham K, Lemaster R L, and Bailey J, Wear 253 (2002) 1194.CrossRefGoogle Scholar
  78. 78.
    Levy-Clement C, Ndao N A, Katty A, Bernard M, Deneuville A, Comninellis C, and Fujishima A, Diam Relat Mater 12 (2003) 606.CrossRefGoogle Scholar
  79. 79.
    McConnell M L, Dowling D P, Pope C, Donnelly K, Ryder A G, and OConnor G M, Diam Relat Mater 11 (2002) 1036.Google Scholar
  80. 80.
    Denysenko I B, Xu S, Long J D, Rutkevych P P, Azarenkov N A, Ostrikov K, J Appl Phys 95 (2004) 2713.CrossRefGoogle Scholar
  81. 81.
    Izak T, Marton M, Varga M, Vojs M, Vesely M, Redhammer R, and Michalka M, Vacuum 84 (2009) 49.CrossRefGoogle Scholar
  82. 82.
    Donnelly K, Dowling D P, McConnell M L, Flood R V, Berkefelt O, and Svennebrink J, Diam Relat Mater 9 (2000) 693.CrossRefGoogle Scholar
  83. 83.
    Donnet J B, Oulanti H, Le Huu T, and Schmitt M, Carbon 44 (2006) 374.CrossRefGoogle Scholar
  84. 84.
    R. J. H. Klein-Douwel, J. J. ter Meulen, J. Appl. Phys. 83 (1998) 4734.CrossRefGoogle Scholar
  85. 85.
    Brandaoa L E V S, Pires R F, and Balzaretti N M, Vib Spectrosc 54 (2010) 84.CrossRefGoogle Scholar
  86. 86.
    Feng Y, Lv J, Liu J, Gao N, Peng H, and Chen Y, Appl Surf Sci 257 (2011) 3433.CrossRefGoogle Scholar
  87. 87.
    Gabler J, and Pleger S, Int J Mach Tools Manuf 50 (2010) 420.CrossRefGoogle Scholar
  88. 88.
    Gao Z, Carabelli V, Carbone E, Colombo E, Demaria F, Dipalo M, Gosso S, Manfredotti C, Pasquarelli A, Rossi S, Xu Y, Vittone E, and Kohn E, Diam Relat Mater 19 (2010) 1021.CrossRefGoogle Scholar
  89. 89.
    Chou Y K, Thompson R G, and Kumar A, Thin Solid Films 518 (2010) 7487.CrossRefGoogle Scholar
  90. 90.
    Hirata A, and Yoshikawa M, Diam Relat Mater 4 (1995) 1363.CrossRefGoogle Scholar
  91. 91.
    Kim N I, Kataoka T, Maruyama S, and Maruta K, Combust Flame 141 (2005) 78.CrossRefGoogle Scholar
  92. 92.
    McKindra T, OKeefe M J, Xie Z, Lu Y, Mater Charact 61 (2010) 661.Google Scholar
  93. 93.
    Konov V I, Prokhorov A M, Uglov S A, Bolshakov A P, Leontiev I A, Dausinger F, Huegel H, Angstenberger B, Sepold G, and Metev S, Appl Phys A Mater Sci Process 66 (1998) 575.CrossRefGoogle Scholar
  94. 94.
    Hanssen L M, Carrington W A, Butler J E, and Snail K A, Mater Lett 7 (1988) 289.CrossRefGoogle Scholar
  95. 95.
    Hirose Y, Amanuma S, and Komaki K, J Appl Phys 68 (1990) 6401.CrossRefGoogle Scholar
  96. 96.
    Liang Q, Vohra Y K, Thompson R, Diam Relat Mater 17 (2008) 2041.Google Scholar
  97. 97.
    Lu F X, Zhong G F, Sun J G, Fu Y L, Tang W Z, Wang J J, Li G H, Zang J M, Pan C H, Tang C X, Lo T L, and Zhang Y G, Diam Relat Mater 7 (1998) 737.CrossRefGoogle Scholar
  98. 98.
    Gheeraert E, Koizumi S, Teraji T, Kanda H, and Nesladek M, Diam Relat Mater 9 (2000) 948.CrossRefGoogle Scholar
  99. 99.
    Glumac N G, and Goodwin D G, Thin Solid Films 212 (1992) 122.CrossRefGoogle Scholar
  100. 100.
    Gorokhov E V, Magunov A N, Feshchenko V S, and Altukhov A A, Instrum Exp Tech 51 (2008) 280.CrossRefGoogle Scholar
  101. 101.
    Granger M C, Witek M, Xu J, Wang J, Hupert M, Hanks A, Koppang M D, Butler J E, Lucazeau G, Mermoux M, Strojek J W, Swain G M, Anal Chem 72 (2000) 3793.CrossRefGoogle Scholar
  102. 102.
    Harris S J, Weiner A M, and Perry T A, Appl Phys Lett 53 (1988) 1605.CrossRefGoogle Scholar
  103. 103.
    Hartmann P, Haubner R, and Lux B, Diam Relat Mater 5 (1996) 850.CrossRefGoogle Scholar
  104. 104.
    Zhang H, Lopez-Honorato E, and Xiao P, Carbon 91 (2015) 346.Google Scholar
  105. 105.
    Liu M, Wen Y, Liu R, Liu B, and Shao Y, Powder Technol 280 (2015) 72.CrossRefGoogle Scholar
  106. 106.
    Liu R, Liu M, Liu JC, Shao Y, and Liu B, J Nucl Mater 467 (2015) 917.Google Scholar
  107. 107.
    Kim Y, Kim H U, Shin Y, Kang S, and Kim T, J Mech Sci Technol 28 (2014) 4693.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Sajad Hussain Din
    • 1
    Email author
  • M. A. Shah
    • 2
  • N. A. Sheikh
    • 1
  • M. Mursaleen Butt
    • 1
  1. 1.Department of Mechanical EngineeringNational Institute of Technology, SrinagarSrinagarIndia
  2. 2.P.G Department of Physics, Special Center for NanosciencesNational Institute of Technology, SrinagarSrinagarIndia

Personalised recommendations