Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2789–2793 | Cite as

Microstructure and Mechanical Properties of NiTiCuFe Multi-component Alloy

  • R. Anand Sekhar
  • Niraj Nayan
  • Srinivasa Rao Bakshi
Technical Paper


NiTiCuFe multi-component alloy was synthesized using vacuum induction melting under argon atmosphere. As-cast structure shows a mixture of phases with FCC as the major phase. Microstructure of the alloy exhibits coarser non-equi-axed dendritic grains with spike-shaped inter-dendritic phases. Scanning electron image with an energy-dispersive X-ray spectrograph line scan taken across dendrites shows Cu segregation in the inter-dendritic region and other elements in the dendritic region. The result shows the presence of Fe2Ti Laves phase. Also the major phase is observed to be a Cu–Ni FCC phase. XRD analysis also confirms the presence of Fe2Ti Laves phase and Cu–Ni FCC phase. The presence of phases is confirmed using a transmission electron microscope (FEI Tecnai T20) operating at 200 kV. The alloy also exhibits good mechanical properties.


Multi-component alloy Dendritic structure Fe2Ti Laves phase FCC phase 


  1. 1.
    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.Google Scholar
  2. 2.
    Tsai K, Tsai M, and Yeh J, Acta Mater 61 (2013) 4887.CrossRefGoogle Scholar
  3. 3.
    Shun T T, Hung C H, and Lee C F, J Alloys Compd 493 (2010) 105.CrossRefGoogle Scholar
  4. 4.
    Tsai C W, Chen Y L, Tsai M H, Yeh J W, Shun T T, and Chen S K, J Alloys Compd 486 (2009) 427.CrossRefGoogle Scholar
  5. 5.
    Lee C P, Chen Y Y, Hsu C Y, Yeh J W, and Shih H C, Thin Solid Films 517 (2008) 1301.CrossRefGoogle Scholar
  6. 6.
    Chou Y L, Yeh J W, and Shih H C, Corros Sci 52 (2010) 2571.CrossRefGoogle Scholar
  7. 7.
    Lee C P, Chen Y Y, Hsu C Y, Yeh J W, and Shih H C, J Electrochem Soc 154 (2007) C424.CrossRefGoogle Scholar
  8. 8.
    Cui H B, Zheng L F, and Wang J Y, Appl Mech Mater 66–68 (2011) 146.CrossRefGoogle Scholar
  9. 9.
    Doğan Ö N, Nielsen B C, and Hawk J A, Oxid Met 80 (2013) 177.CrossRefGoogle Scholar
  10. 10.
    Zhang Y, and Zhou Y J, Mater Sci Forum 561–565 (2007) 1337.CrossRefGoogle Scholar
  11. 11.
    Miedema A R, de Boer F R, and Boom R, Calphad 1 (1977) 341.CrossRefGoogle Scholar
  12. 12.
    Nayan N, Singh G, Narayana Murty S V S, Jha A K, Pant B, and George K M, Metall Mater Trans A Phys Metall Mater Sci 46 (2015) 2201.Google Scholar
  13. 13.
    Murty B S, Yeh J W, Ranganathan S, High-Entropy Alloys. Butterworth-Hei-Nemann (2014).Google Scholar
  14. 14.
    Laboratoriurn N, and Van Amsterdam U, 81 (1981).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIIT MadrasChennaiIndia
  2. 2.Vikram Sarabhai Space CentreThiruvananthapuramIndia

Personalised recommendations