Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2749–2758 | Cite as

Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy

  • Jitesh Kumar
  • Nirmal Kumar
  • Smarajeet Das
  • N. P. Gurao
  • Krishanu BiswasEmail author
Technical Paper


The present investigation reports the effect of aluminum addition on the microstructural evolution in the equiatomic CoCrFeMnNi high-entropy alloy. Aluminum was added to the alloy in varying quantity (0 ≤ Al ≤ 10 at.%) using the vacuum arc melting technique, and phase formation was probed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results indicate that the FCC phase in the alloy remains unaltered up to Al of 5 at.%. The higher amount of Al addition leads to the precipitation of B2 Al(Ni, Cr, Fe, Co, Mn) in the FCC matrix. For Al ≥ 7%, typical phase-separated microstructure consisting of FCC, and B2 phases have been observed. The microstructural changes lead to hardness variation from 1.3 to 2.2 GPa, mainly due to precipitation and solute solution hardening of FCC phase. For FCC phase, Al atoms being larger in size can lead to lattice distortion and improve yield strength. The results have been explained by detailed thermodynamic analysis using HEA3 database.


High-entropy alloy Cantor alloy Microstructure TEM 



The authors would like to thank Mr. Niraj Nayan from VSSC, Indian Space Research Organization (ISRO) for technical assistance. The authors would like to acknowledge the funding received from ISRO under Respond scheme and Science and Engineering Research Board (SERB) of Department of Science and Technology (DST).


Funding provided by Science and Engineering Research Board and Indian Space Research Organization is duly acknowledged.


  1. 1.
    Murty B S, Yeh J W, Ranganathan S, Chapter 1A Brief History of Alloys and the Birth of High-Entropy Alloys. High Entropy Alloys. Butterworth-Heinemann, Boston (2014) p 1.Google Scholar
  2. 2.
    Sharma A S, Yadav S, Biswas K, Basu B, Mater Sci Eng R Rep 131 (2018) 1.CrossRefGoogle Scholar
  3. 3.
    Miracle D B, Senkov O N. Acta Mater 122 (2017) 448.CrossRefGoogle Scholar
  4. 4.
    Reddy T S, Wani I S, Bhattacharjee T, Reddy S R, Saha R, Bhattacharjee P P. Intermetallics 91 (2017) 150.CrossRefGoogle Scholar
  5. 5.
    Wani I S, Sathiaraj G D, Ahmed M Z, Reddy S R, Bhattacharjee P P. Mater Charact 118 (2016) 417.CrossRefGoogle Scholar
  6. 6.
    Cantor B, Chang I T H, Knight P, Vincent A J B. Mater Sci Eng A 375–377 (2004) 213.CrossRefGoogle Scholar
  7. 7.
    Cantor B, Entropy 16 (2014) 4749.CrossRefGoogle Scholar
  8. 8.
    Yeh J W, Ann Chim - Sci Mat 31 (2006) 633.CrossRefGoogle Scholar
  9. 9.
    Kumar N, Tiwary C S, Biswas K, J Mater Sci 53 (2018) 13411.CrossRefGoogle Scholar
  10. 10.
    Zhao Y Y, Nieh T G, Intermetallics 86 (2017) 45.CrossRefGoogle Scholar
  11. 11.
    He J Y, Liu W H, Wang H, Wu Y, Liu X J, Nieh T G, Lu Z, Acta Mater 62 (2014) 105.CrossRefGoogle Scholar
  12. 12.
    Sun X, Zhang H, Lu S, Ding X, Wang Y, Vitos L, Acta Mater 140 (2017) 366.CrossRefGoogle Scholar
  13. 13.
    Otto F, Dlouhý A, Somsen C, Bei H, Eggeler G, George E P, Acta Mater 61 (2013) 5743.CrossRefGoogle Scholar
  14. 14.
    Schuh B, Mendez-Martin F, Völker B, George EP, Clemens H, Pippan R, Hohenwarter A, Acta Mater 96 (2015) 258.CrossRefGoogle Scholar
  15. 15.
    Tsai K Y, Tsai M H, Yeh J W, Acta Mater 61 (2013) 4887.CrossRefGoogle Scholar
  16. 16.
    Stepanov N, Tikhonovsky M, Yurchenko N, Zyabkin D, Klimova M, Zherebtsov S, Efimov A, Salishchev G, Intermetallics 59 (2015) 8.CrossRefGoogle Scholar
  17. 17.
    Liu T K, Wu Z, Stoica AD, Xie Q, Wu W, Gao YF, Bei H, An K, Mater Des 131 (2017) 419.CrossRefGoogle Scholar
  18. 18.
    Moon J, Bae J W, Jang M J, Baek S M, Yim D, Lee B-J, Kim H S, Mater Chem Phys 210 (2018) 187.CrossRefGoogle Scholar
  19. 19.
    Li C, Li J C, Zhao M, Jiang Q, J Alloys Compd 504 (2010) S515.CrossRefGoogle Scholar
  20. 20.
    Li C, Li J C, Zhao M, Jiang Q, J Alloys Compd 475 (2009) 752.CrossRefGoogle Scholar
  21. 21.
    Varalakshmi S, Kamaraj M, Murty B S, J Alloys Compd 460 (2008) 253.CrossRefGoogle Scholar
  22. 22.
    Wang W R, Wang W L, Wang S C, Tsai Y C, Lai C H, Yeh J W, Intermetallics 26 (2012) 44.CrossRefGoogle Scholar
  23. 23.
    Nelson J B, Riley D P, Proc Phys Soc 57 (1945) 160.CrossRefGoogle Scholar
  24. 24.
    Biswas K, Phanikumar G, Holland-Moritz D, Herlach D M, Chattopadhyay K, Philos Mag 87 (2007) 3817.CrossRefGoogle Scholar
  25. 25.
    Biswas K, Phanikumar G, Chattopadhyay K, Volkmann T, Funke O, Holland-Moritz D, Herlach D M, Mater Sci Eng A 375–377 (2004) 464.CrossRefGoogle Scholar
  26. 26.
    Mridha S, Samal S, Khan P Y, Biswas K, Govind, Metall Mater Trans A 44 (2013) 4532.CrossRefGoogle Scholar
  27. 27.
    Mohanty S, Gurao N P, Biswas K, Mater Sci Eng A 617 (2014) 211.CrossRefGoogle Scholar
  28. 28.
    Mohanty S, Maity T N, Mukhopadhyay S, Sarkar S, Gurao N P, Bhowmick S, Biswas K, Mater Sci Eng A 679 (2017) 299.CrossRefGoogle Scholar
  29. 29.
    Mishra A, Samal S, Biswas K, Trans Indian Inst Met 65 (2012) 725.CrossRefGoogle Scholar
  30. 30.
    Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J, Acta Materialia 85 (2015) 14.CrossRefGoogle Scholar
  31. 31.
    Krishanu Biswas T, Gurao N P, Mater Sci Eng A 657 (2016) 224.CrossRefGoogle Scholar
  32. 32.
    Sahu S R, Devi M M, Mukherjee P, Sen P, Biswas K, J Nanomaterials 2013 (2013) 1.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Jitesh Kumar
    • 1
  • Nirmal Kumar
    • 1
  • Smarajeet Das
    • 2
  • N. P. Gurao
    • 1
  • Krishanu Biswas
    • 1
    Email author
  1. 1.Department of Material Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations