Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2707–2712 | Cite as

Microstructure Evolution during Semi-solid Isothermal Holding of Liquidus Cast Strontium-Modified A356 Alloy

  • Jayakrishnan Nampoothiri
  • C. Muthuraja
  • I. Balasundar
  • K. R. Ravi
Technical Paper
  • 11 Downloads

Abstract

An attempt has been made to understand the microstructural evolution during semi-solid isothermal holding of liquidus cast Sr-modified A356 alloy. It was observed that the liquidus casting is effective in producing non-dendritic microstructure with average sphericity of 0.8 and 0.82 for unmodified and modified alloys, respectively. Isothermal holding of the samples at a temperature corresponding to solid fraction of 0.3 for 15 min enhanced the sphericity of unmodified and modified alloys to 0.84 and 0.85, respectively. Further increase in holding resulted grain coarsening and reduction in sphericity. The grain coarsening rate (K) of samples was analysed with Lifshitz–Slyozov–Wanger equation, and the values of K were found to be 58.3 and 98.3 µm3/s for unmodified and modified alloys, respectively. The grain coarsening in unmodified alloy was dominated by Ostwald ripening, whereas in case of modified alloy, grain coarsening was governed by grain coalescence.

Keywords

A356 alloys Eutectic modification Ultrasonic treatment Liquidus casting Isothermal holding Spheroidization Microstructure evolution 

Notes

Acknowledgements

Authors would like to extend their acknowledgement to Directorate of Naval Research Board, Govt. of India (Grant No: DNRD/05/4003/NRB/292) and CSIR-India (Award No: 08/473(0006)/2015/EMR-1) for their extended support.

References

  1. 1.
    Chen C Y, Sekhar J A, Backman D G, and Mehrabian R, Mater Sci Eng 40 (1979) 265.CrossRefGoogle Scholar
  2. 2.
    Salleh M S, Omar M Z, Syarif J, and Mohammed M N, ISRN Mater Sci 2013 (2013) 9.CrossRefGoogle Scholar
  3. 3.
    Jufu J, Atkinson H V, and Ying W, J Mater Sci Technol 33 (2017) 379.CrossRefGoogle Scholar
  4. 4.
    Park P C, Kim S, Kwon Y, Lee Y, and Lee J, Mater Sci Eng A 391 (2005) 86.CrossRefGoogle Scholar
  5. 5.
    Yucel B, J Alloys Compd 473 (2009) 133.CrossRefGoogle Scholar
  6. 6.
    Bolourim A, Shahmiri M, and Kang CG, J Mater Sci 47 (2012) 3544.CrossRefGoogle Scholar
  7. 7.
    Flemings M C, Metall Trans B 22 (1991) 269.CrossRefGoogle Scholar
  8. 8.
    Wang S C, Li Y Y, Chen W P, and Zheng X P, Trans Nonferrous Met Soc China 18 (2008) 784.CrossRefGoogle Scholar
  9. 9.
    Srikanth, M, and Sharma A, Trans Indian Inst Met 63 (2010)  https://doi.org/10.1007/s12666-010-0002-4.CrossRefGoogle Scholar
  10. 10.
    Terzi S, Salvo L, Suery M, and Dahle A K, Trans Indian Inst Met 62 (2009) 447  https://doi.org/10.1007/s12666-009-0060-7.CrossRefGoogle Scholar
  11. 11.
    Liu D, Atkinson H V, and Jones H, Acta Mater 53 (2005) 3807.CrossRefGoogle Scholar
  12. 12.
    Javidani M, and Larouche D, Int Mater Rev 59 (2014) 132.CrossRefGoogle Scholar
  13. 13.
    Mallapur D G, Udupa K R, and Kori S A, Mater Sci Eng A 528 (2011) 4747.CrossRefGoogle Scholar
  14. 14.
    Hegde S and, Prabhu K N, J Mater Sci 43 (2008) 3009.CrossRefGoogle Scholar
  15. 15.
    Fatahalla N, Hafiz M, and Abdulkhalek M, J Mater Sci 34 (1999) 3555.CrossRefGoogle Scholar
  16. 16.
    Marzouk M, Jain M, and Shankar S, Mater Sci Eng A 598 (2014) 277.CrossRefGoogle Scholar
  17. 17.
    Lashgari H R, Emamy M, Razaghian A, and Najimi A A, Mater Sci Eng A 517 (2009) 170.Google Scholar
  18. 18.
    Campbell J, Metall Trans B 37 (2006) 857.CrossRefGoogle Scholar
  19. 19.
    Nampoothiri J, Balasundar I, Raj B, Murty B S, and Ravi K R, Mater Sci Eng A 724 (2018) 586.Google Scholar
  20. 20.
    Mohammed M N, Omar M Z, Salleh M S, Alhawari K S, and Kapranos P,  https://doi.org/10.1155/2013/752175.Google Scholar
  21. 21.
    Forn A, Menargues S, Martín E, and Picas J A, Solid State Phenom 141–143 (2008) 219.CrossRefGoogle Scholar
  22. 22.
    Muthuraja C, Akalya A, Ahmed R R, Nampoothiri J, Balasundar I, and Ravi K R, J Alloys Compd 695 (2017) 3559.Google Scholar
  23. 23.
    Nampoothiri J, Raj B, and Ravi K R, Trans Indian Inst Met 68 (2015) 1101.CrossRefGoogle Scholar
  24. 24.
    Dong J, Cui J Z, Le Q C, and Lu G M, Mater Sci Eng A 345 (2003) 234.CrossRefGoogle Scholar
  25. 25.
    Wang H, Davidson C J, Taylor A J, and StJohn D H, Mater Sci Forum 396–402 (2002) 143.CrossRefGoogle Scholar
  26. 26.
    Xia K, and Tausig G, Mater Sci Eng A 46 (1998) 1.CrossRefGoogle Scholar
  27. 27.
    Deepak Kumar S, Acharya M, Mandal A, and Chakraborty M, Trans Indian Inst Met 68 (2015) 1075.Google Scholar
  28. 28.
    Tzimas E, and Zavaliangos A, Mater Sci Eng A 289 (2000) 228.CrossRefGoogle Scholar
  29. 29.
    Khalifa W, Tsunekawa Y, and Okumiya M, Solid State Phenom 141–143 (2008) 499.CrossRefGoogle Scholar
  30. 30.
    Liu X, Beausir B, Zhang Y, Gan W, Yuan H, Yu F, Esling C, Zhao X, and Zuo L, J Alloys Compd 730 (2018) 208.CrossRefGoogle Scholar
  31. 31.
    Emadi D, Gruzleski J E, and Toguri J M, Metall Trans B 24 (1993) 1055.CrossRefGoogle Scholar
  32. 32.
    Srivastava V C, and Sahoo K L, Mater Sci Pol 25 (2007) 733.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Jayakrishnan Nampoothiri
    • 1
    • 2
  • C. Muthuraja
    • 1
    • 2
  • I. Balasundar
    • 3
  • K. R. Ravi
    • 1
    • 2
  1. 1.Structural Nanomaterials LabPSG Institute of Advanced StudiesCoimbatoreIndia
  2. 2.Department of Metallurgical EngineeringPSG College of TechnologyCoimbatoreIndia
  3. 3.Near Net Shape Group, Aeronautical Materials DivisionDefence Metallurgical Research LaboratoryHyderabadIndia

Personalised recommendations