Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2693–2698 | Cite as

Performance of MWCNT-Reinforced SAC0307/Cu Solder Joint Under Multiple Reflow Cycles

  • Sanjay Tikale
  • K. Narayan Prabhu
Technical Paper

Abstract

The evolution of interfacial microstructure and its effect on shear strength under multiple reflow cycles for multi-walled carbon nanotubes (MWCNT)-reinforced Sn0.3Ag0.7Cu solder/copper joint was investigated. The melting characteristics, wettability and mechanical properties of the solder alloy were assessed. The addition of MWCNT in the range of 0.01–0.05 wt% improved the wettability, melting behaviour and mechanical strength of the SAC0307 solder alloy. The nanoparticles in small weight fraction (0.01–0.05 wt%) addition were more effective in retarding intermetallic compounds growth at the interface. Amongst all compositions studied, the SAC0307–0.05MWCNT nanocomposite showed significant improvement in the performance of SAC0307/Cu solder joint under multiple reflow condition. The nanoparticles’ reinforcement above 0.1 wt% of the solder alloy was ineffective in improving the solder performance due to increased clustering in the matrix.

Keywords

Multi-walled carbon nanotubes Nanocomposite Multiple reflow cycles Shear strength 

References

  1. 1.
    Abtew M, and Selvaduray G, Mater Sci Eng R Reports 27 (2000) 95.CrossRefGoogle Scholar
  2. 2.
    Abdelhadi O M, and Ladani L, J Electron Packag 135 (2013) 021004.CrossRefGoogle Scholar
  3. 3.
    Ru Y, Ma L, and Guo F, in Int. Conf. Electron. Packag. Technol., IEEE, (2016) 142.Google Scholar
  4. 4.
    Ting Tan A, Wen Tan A, and Yusof F, Sci Technol Adv Mater 16 (2015) 1.CrossRefGoogle Scholar
  5. 5.
    Fornaro O, and Morando C, Int J CAST Met Res 31 (2017) 118.CrossRefGoogle Scholar
  6. 6.
    Kumar K M, Kripesh V, and Tay A A O, J Alloys Compd 450 (2008) 229.CrossRefGoogle Scholar
  7. 7.
    Shnawah D A, Said S B M, Sabri M F M, Badruddin I A, and Che F X, J Electron Mater 41 (2012) 2631.CrossRefGoogle Scholar
  8. 8.
    Chuang C L, Tsao L C, Lin H K, and Feng L P, Mater Sci Eng A 558 (2012) 478.CrossRefGoogle Scholar
  9. 9.
    Xu S, Chan Y C, Zhang K, and Yung K C, J Alloys Comp 595 (2014) 92.CrossRefGoogle Scholar
  10. 10.
    Yang L, Liu H, and Zhang Y, J Electron Mater 47 (2017) 662.CrossRefGoogle Scholar
  11. 11.
    Dele-Afolabi T T, Azmah Hanim M A, Norkhairunnisa M, Yusoff H M, and Suraya M T, J Mater Sci Mater Electron 26 (2015) 8249.CrossRefGoogle Scholar
  12. 12.
    Nai S M L, Wei J, and Gupta M, Mater Sci Eng A, 423 (2006) 166.CrossRefGoogle Scholar
  13. 13.
    Xu S, Hu X, Yang Y, Chen Z, and Chan Y C, J Mater Sci Mater Electron 25 (2014) 2682.CrossRefGoogle Scholar
  14. 14.
    Mehrabi K, Khodabakhshi F, Zareh E, Shahbazkhan A, and Simchi A, J Alloys Compd 688 (2016) 143.CrossRefGoogle Scholar
  15. 15.
    Tsao L C, Wu M W, and Chang S Y, J Mater Sci Mater Electron 23 (2012) 681.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations