Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2819–2825 | Cite as

Phase Equilibria and Mechanical Properties in Multicomponent Al–Ni–X (X = Fe, Cr) Alloys

  • Sandeep Jain
  • Reliance Jain
  • M. R. Rahul
  • Sumanta Samal
  • Vinod Kumar
Technical Paper

Abstract

The present study reports the microstructure evolution in multicomponent Al–Ni–X (X = Fe, Cr) alloys. The X-ray diffraction characterization technique and electron microscope attached with energy-dispersive spectroscopic analysis have been used to understand the structural and microstructural evolution in the present multicomponent Al–Ni–X (X = Fe, Cr) alloys. Al98.6Ni0.5Fe0.9 alloy shows the presence of (Al)ss, Al3Fe and Al9FeNi phases. It is observed that the microstructure of Al–Ni–Fe alloy shows the existence of primary dendritic phase of (Al)ss and two eutectics (i.e. globular eutectic: L → (Al)ss + Al3Fe and lamellar eutectic: L → (Al)ss + Al9FeNi). Al–Ni–Fe alloy shows superb compressive strength (~ 200 MPa) and plasticity (~ 70%) at room temperature, while the microstructure of multicomponent Al92Ni4Cr4 alloy exhibits the presence of dendritic phases of Al7Cr and Al3Ni plus ternary eutectic (i.e. L → (Al)ss + Al3Ni + Al7Cr). Al–Ni–Cr alloy shows good room temperature ultimate compressive strength (~ 300 MPa) and plasticity (~ 50%). It is important to note that there is no fracture during mechanical testing of investigated Al–Ni–X (X = Fe, Cr) alloys.

Keywords

Al-based alloys SEM XRD Microstructural evolution Mechanical properties 

References

  1. 1.
    ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Materials Park, Ohio (1990).Google Scholar
  2. 2.
    Sun B A, Pan M X, Zhao D Q, Wang W H, Xi X K, Sandor M T, and Wu Y, Scr Mater 59 (2008) 1159.CrossRefGoogle Scholar
  3. 3.
    Mondal C, Singh A K, Mukhopadhyay A K, and Chattopadhyay K, Mater Sci Eng A 577 (2013) 87.CrossRefGoogle Scholar
  4. 4.
    Nandi P, Suwas S, Kumar S, and Chattopadhyay K, Metall Mater Trans A 44 (2013) 2591.CrossRefGoogle Scholar
  5. 5.
    He G, Eckert J, Löser W, and Schultz L, Nat Mater 2 (2003) 33.CrossRefGoogle Scholar
  6. 6.
    He G, Löser W, and J. Eckert, Acta Mater 51 (2003) 5223.CrossRefGoogle Scholar
  7. 7.
    He G, Eckert J, Löser W, and Hagiwara M, Acta Mater 52 (2004) 3035.CrossRefGoogle Scholar
  8. 8.
    Samal S, Mondal B, Biswas K, and Govind, Metall Mater Trans A 44 (2013) 427.CrossRefGoogle Scholar
  9. 9.
    Mondal B, Samal S, Biswas K, and Govind, IOP Conf Series: Mater Sci Eng 27 (2011) 012025.CrossRefGoogle Scholar
  10. 10.
    Samal S, Gautam P, Agarwal S, and Biswas K, Mater Sci Forum 790 (2014) 497.CrossRefGoogle Scholar
  11. 11.
    Samal S, Gautam P, Agarwal S, and Biswas K, Metall Mater Trans A 46 (2015) 851.CrossRefGoogle Scholar
  12. 12.
    Samal S, and Biswas K, J Nanopart Res 15 (2013) 1–11.CrossRefGoogle Scholar
  13. 13.
    Massalski T B, Binary Alloy Phase Diagrams, second edition, ASM International, Metals Park (1990).Google Scholar
  14. 14.
    Ünlü N, Gable B M, Shiflet G J, and Starke E A, Metall Mater Trans A 34 (2003) 2757.CrossRefGoogle Scholar
  15. 15.
    Biswas K, and Samal S, Solidification of Peritectic Alloys, in Solidification of Containerless Undercooled Melts, First Edition. Edited by D.M. Herlach and D.M. Matson, WILEY VCH (2012) 509–541.Google Scholar
  16. 16.
    Mathavan J J, and Patnaik A, IOP Conf Ser Mater Sci Eng 149 (2016) 012052.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreIndoreIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations