Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 11, pp 2861–2866 | Cite as

Solidification Behaviour of Al–SiC Composite Foam

  • S. Das
  • D. P. Mondal
  • Pradeep Rohatgi
Technical Paper
  • 14 Downloads

Abstract

This paper describes the solidification behaviour of Al composite melt in the narrow cell wall region in Al foam. Aluminium alloy foams prepared through melt route essentially involve entrapment of gaseous phase in a high viscous liquid followed by solidification. During solidification, the composite melt present in the narrow channel amongst the gas bubbles largely restricts the flow of heat and composite melt solidifies in a restricted region covered by almost zero conducting phases. The solidification front velocity has been computed using different models and their results have been compared. The distribution of SiC particles and matrix microstructure has been evaluated and compared with the experimental observation. It is noted that the solidification front velocity is slowed down due to the presence of gas bubbles and solidification is expected to initiate within the melt away from the melt/bubble interface which facilitates pushing SiC particles towards the gas bubble/melt interface.

Keywords

Al foam Cell wall Constraint solidification Heat transfer coefficient 

References

  1. 1.
    Banhart J, Prog Mater Sci 46 (2001) 559.CrossRefGoogle Scholar
  2. 2.
    Ashby M F, Evans A G, Fleck N A, Gibson L J, Hutchinson J W, and Wadley H N G, Metal Foams: A Design Guide, Butterworth–Heinemann, Oxford (2000).Google Scholar
  3. 3.
    Degischer H P, and Kriszt B, Handbook of Cellular Metals, Wiley-VCH, Chemical Industry Press, Weinheim (2005), p 150.Google Scholar
  4. 4.
    Styles Lu T J, Stone H A, and Ashby M F, J Acta Mech 46 (1998) 3619.Google Scholar
  5. 5.
    Li Z, Yu J, and Guo L, Int J Mech Sci 54 (2012) 48.CrossRefGoogle Scholar
  6. 6.
    Allen H G, Analysis and Design of Structural Sandwich Panels, Perg, New York (1969).Google Scholar
  7. 7.
    Styles M, Compston P, and Kalyanasundaram S, Compos Struct 80 (2007) 532.CrossRefGoogle Scholar
  8. 8.
    Vafai K, and Mahjoob S, Int J Heat Mass Transf 51 (2008) 3701.CrossRefGoogle Scholar
  9. 9.
    Banhart J, J Met 52 (2000) 22.Google Scholar
  10. 10.
    Gibson L J, in Metal Matrix Composites Handbook, 3 eds. Anthony Kelly, Car Zwesea (2000), p 821.Google Scholar
  11. 11.
    Gibson L J, and Ashby M F, Cellular Solids: Structure and Properties, 2nd ed, Pergamon Press, Oxford (2000).Google Scholar
  12. 12.
    Mukherjee M, Garcia-Moreno F, and Banhart J, Acta Mater 58 (2010) 6358.CrossRefGoogle Scholar
  13. 13.
    Lázaro J, Solórzano E, Rodríguez-Pérez M A, and Kennedy A R, Mater Sci Eng A Vol 672 (2016) 236.CrossRefGoogle Scholar
  14. 14.
    Uhlman U R, Chalmers B, and Jackson K A, J Appl Phys 35 (1964) 2986.CrossRefGoogle Scholar
  15. 15.
    Bolling G F and Cisse J, J Cryst Growth 10 (1971) 56.CrossRefGoogle Scholar
  16. 16.
    Stefenescu D M, Dhindow B K, Kacar S A, and Moitra A, Metall Trans 19A (1988) 2847.CrossRefGoogle Scholar
  17. 17.
    Stefenescu D M, Dhindow B K, Curreri P A, and Bondyopadhyay D K, in Solidification Processing, Sheffield, England (1987), p 469.Google Scholar
  18. 18.
    Zubkov A M, Lobanov V G and Nikanova V V, Sov Phys Crystallogr 121 (1976) 369.Google Scholar
  19. 19.
    Surappa M K and Rohatgi P K, J Mater Sci Lett 16 (1981) 765.Google Scholar
  20. 20.
    Keshavaram B N, Rohatgi P K, Asthana R, and Sathyanarayana K G, in Solidification of Metal Matrix Composite, (ed) Rohatgi P K, TMS Publication (1989), p 151.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.CSIR- AMPRIBhopalIndia
  2. 2.Materials DepartmentUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations