Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 10, pp 2575–2591 | Cite as

Effect of Material Position and Ultrasonic Vibration on Mechanical Behaviour and Microstructure of Friction Stir-Welded AA7075-T651 and AA6061 Dissimilar Joint

  • Yuvaraj Kunnathur Periyasamy
  • Ashoka Varthanan Perumal
  • Darshan Rajasekaran
Technical Paper
  • 66 Downloads

Abstract

In this research work, friction stir welding of dissimilar AA7075-T651 and AA6061 aluminium alloys has been carried out by varying the material position and power of ultrasonic vibration (UV). Material flow, microstructure, hardness and tensile properties of the weld joint were mainly discussed . Results showed that the position of an AA7075-T651 material in the advancing side and ultrasonic power of 1.5 kW exhibited maximum tensile strength, hardness and bending strength. Elongation decreased with an increase in UV power. When using 1.5 kW UV power, the formation of multiple vortexes and distinct layers in the weld nugget zone improved the dissimilar joint property. A micro-void formation resulted from the lack of material filling and excessive turbulence when the UV power increased to 2 kW. The maximum compressive load of 50 kN was attained for the bending angle of 44° at 1.5 kW UV power. On increasing the ultrasonic power, dimples elongated and glided along the weld zone to cause void and tunnel formation .

Keywords

Friction stir welding Ultrasonic vibration Tensile strength Hardness Bending strength 

References

  1. 1.
    Das U, Toppo V, Sahoo T K, and Sahoo R, Trans Indian Inst Metals 71 (2018) 823.CrossRefGoogle Scholar
  2. 2.
    Heidarzadeh A, Barenji R V, Esmaily M, and Ilkhichi A R, Trans Indian Inst Metals 68 (2015) 757.CrossRefGoogle Scholar
  3. 3.
    Amini S, Amiri M R, and Barani A, Int J Adv Manuf Techol 76 (2014) 255.Google Scholar
  4. 4.
    Shiraly M, Shamanian M, Toroghinejad M R, Jazani M A, and Sadreddini S, Trans Indian Inst Metals 70 (2017) 2205.CrossRefGoogle Scholar
  5. 5.
    Ragu Nathan S, Balasubramanian V, Malarvizhi S, and Rao A G, Trans Indian Inst Metals 69 (2016) 1861.CrossRefGoogle Scholar
  6. 6.
    Sevvel P, and Jaiganesh V, Trans Indian Inst Metals 68 (2015) 41.CrossRefGoogle Scholar
  7. 7.
    Marzbanrad J, Akbari M, Asadi P, and Safaee S, Metall Mater Trans B 45 (2014) 1887.CrossRefGoogle Scholar
  8. 8.
    Vijay S J, and Murugan N, Mater Des 31 (2010) 3585.CrossRefGoogle Scholar
  9. 9.
    Liu Z, Yue Y, Zhang W, and Xing J, Trans Indian Inst Metals (2018).  https://doi.org/10.1007/s12666-018-1360-6.CrossRefGoogle Scholar
  10. 10.
    Khodaverdizadeh H, Heidarzadeh A, and Saeid T, Mater Des 45 (2013) 265.CrossRefGoogle Scholar
  11. 11.
    Patel V V, Badheka V J, and Kumar A, Trans Indian Inst Metals 70 (2017) 1151.CrossRefGoogle Scholar
  12. 12.
    Ilangovan M, Rajendra Boopathy S, and Balasubramanian V, Def Technol 11 (2015) 174.CrossRefGoogle Scholar
  13. 13.
    Elangovan K, and Balasubramanian V, Mater Sci Eng A 459 (2007) 7.CrossRefGoogle Scholar
  14. 14.
    Felix Xavier Muthu M, and Jayabalan V, Trans Nonferrous Metals Soc China (English Edition) 26 (2016) 984.CrossRefGoogle Scholar
  15. 15.
    Ahmadnia M, Seidanloo A, Teimouri R, Rostamiyan Y, and Titrashi K G, Int J Adv Manuf Technol 78 (2015) 2009.CrossRefGoogle Scholar
  16. 16.
    Liu X, Wu C, and Padhy G K, Scr Mater 102 (2015) 95.CrossRefGoogle Scholar
  17. 17.
    Liu X C and Wu C S, Mater Des 90 (2016) 350.CrossRefGoogle Scholar
  18. 18.
    Lv X, Wu C S, Yang C, and Padhy G K, J Mater Process Technol 254 (2018) 145.CrossRefGoogle Scholar
  19. 19.
    Ma H K, He D Q, and Liu J S, Sci Technol Weld Join 20 (2015) 216.CrossRefGoogle Scholar
  20. 20.
    Alinaghian I, Honarpisheh M, and Amini S, Int J Adv Manuf Technol 95 (2018) 2757.CrossRefGoogle Scholar
  21. 21.
    Amini S, and Amiri M R, Int J Adv Manuf Technol 73 (2014) 127.CrossRefGoogle Scholar
  22. 22.
    Ji S, Meng X, Liu Z, Huang R, and Li Z, Mater Lett 201 (2017) 173.CrossRefGoogle Scholar
  23. 23.
    Ruilin L, Diqiu H, Luocheng L, Shaoyong Y, and Kunyu Y, Int J Adv Manuf Technol 73 (2014) 321.CrossRefGoogle Scholar
  24. 24.
    Shi L, Wu C S, Liu X C, J Mater Process Technol 222 (2015) 91.CrossRefGoogle Scholar
  25. 25.
    Zhong Y B, Wu C S, and Padhy G K, J Mater Process Technol 239 (2017) 273.CrossRefGoogle Scholar
  26. 26.
    Sahu P K, Pal S, Pal S K, Jain R, J Mater Process Technol 235 (2016) 55.CrossRefGoogle Scholar
  27. 27.
    Gao S, Wu C S, and Padhy G K, Sci Technol Weld Join (2018).  https://doi.org/10.1080/13621718.2018.1476084.CrossRefGoogle Scholar
  28. 28.
    Yuvaraj K P, Varthanan P A, and Rajendran C, Int J Comput Mater Sci Surf Eng 7 (2018) 130.Google Scholar
  29. 29.
    Li H, Zhang J, and Xiong Y, Sci Technol Weld Join 23 (2018) 308.CrossRefGoogle Scholar
  30. 30.
    Shanmuga Sundaram N, and Murugan N, Mater Des 31 (2010) 4184.CrossRefGoogle Scholar
  31. 31.
    Lakshminarayanan A K, Balasubramanian V, and Elangovan K, Int J Adv Manuf Technol 40 (2009) 286.CrossRefGoogle Scholar
  32. 32.
    Babu S, Elangovan K, Balasubramanian V, and Balasubramanian M, Metals Mater Int 15 (2009) 321.CrossRefGoogle Scholar
  33. 33.
    Aliha M R M, Shahheidari M, Bisadi M, Akbari M, and Hossain S, Int J Adv Manuf Technol 86 (2016) 2551.CrossRefGoogle Scholar
  34. 34.
    Saravanan V, Rajakumar S, Banerjee N, and Amuthakkannan R, Int J Adv Manuf Technol 87 (2016) 2337.CrossRefGoogle Scholar
  35. 35.
    Sabari S S, Malarvizhi S, and Balasubramanian V, Int J Mech Mater Eng 11 (2016) 5.CrossRefGoogle Scholar
  36. 36.
    Hajihashemi M, Shamanian M, and Niroumand B, Sci Technol Weld Join 21 (2016) 493.CrossRefGoogle Scholar
  37. 37.
    Sun T, Tremsin A S, Roy M J, Hofmann M, Prangnell P B, and Withers P J, Mater Sci Eng A 712 (2018) 531.CrossRefGoogle Scholar
  38. 38.
    Zeng X H, Xue P, Wang D, Ni D R, Xiao B L, Wang K S, and Ma Z Y, Sci Technol Weld Join (2018).  https://doi.org/10.1080/13621718.2018.1471844.CrossRefGoogle Scholar
  39. 39.
    Kadlec M, Ru˚žek R, and Nováková L, Int J Fatigue 74 (2015) 7.CrossRefGoogle Scholar
  40. 40.
    Reza-E-Rabby M, Tang W, and Reynolds A P, Sci Technol Weld Join 20 (2015) 425.CrossRefGoogle Scholar
  41. 41.
    Golezani A S, Barenji R V, Heidarzadeh A, and Pouraliakbar H, Int J Adv Manuf Technol 81 (2015) 1155.CrossRefGoogle Scholar
  42. 42.
    Giraud L, Robe H, Claudin C, Desrayaud C, Bocher P, and Feulvarch E, J Mater Process Technol 235 (2016) 220.CrossRefGoogle Scholar
  43. 43.
    Daniolos N M, and Pantelis D I, Int J Adv Manuf Technol 88 (2017) 2497.CrossRefGoogle Scholar
  44. 44.
    Liu Z, Meng X, Ji S, Li Z, and Wang L, J Manuf Process 31 (2018) 552.CrossRefGoogle Scholar
  45. 45.
    Yang, J W, Cao B, He X C, and Luo H S, Sci Technol Weld Join 19 (2014) 500.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSri Krishna College of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations