Transactions of the Indian Institute of Metals

, Volume 71, Issue 10, pp 2553–2564 | Cite as

Dissimilar Friction Stir Welding of Carbon Steel and Stainless Steel: Some Observation on Microstructural Evolution and Stress Corrosion Cracking Performance

  • Mohd Joharif Bin Matlan
  • Hamed MohebbiEmail author
  • Srinivasa Rao Pedapati
  • Mokhtar B. Awang
  • Mokhtar Che Ismail
  • Saeid Kakooei
  • Nsikan Etim Dan
Technical Paper


Specimens of carbon steel (CS) and stainless steel (SS) 316 was joined together by double sided butt joint Friction Stir Welding method. Effect of the tool rotational speed and specimen preheat temperature on resultant microstructure and mechanical behavior was studied. Constant traveling speed of 100 mm/min, tool rotational speed of 500 and 1000 rpm in combination with preheat temperature of 50 and 100 °C was employed for this study. No sign of root crack was observed in all specimens. Optical microscopy identified four distinct zones characterized as the stir zone, thermal mechanically affected zone (TMAZ) in both SS and CS specimen, and heat affected zone (HAZ) in CS specimen. No HAZ in SS was observed. Scanning electron microscopy revealed formation of a thin void layer on several locations at the boundary between the TMAZ and the re-oriented region of SS side, while on the CS side no voids were identified. The grain size on the TMAZ of CS was observed to be smaller compared to the HAZ region. No sign of root crack was observed in all specimens. The specimens were subjected to U bend. Specimens joined with 1000 rpm rotational speed developed a brittle behavior and failed in U bend test. The extent of the crack and brittleness was proportional to the applied preheat. U bent specimens from 500 rpm rotation demonstrated a good stress corrosion cracking behavior in 30,000 ppm solution of sodium chloride (NaCl).


FSW SCC Stainless steel Carbon steel Welding Corrosion Microstructure 


  1. 1.
    Chiteka K, IOSR J Mech Civ Eng 3 (2013) 16.CrossRefGoogle Scholar
  2. 2.
    Pradeep A, Int J Eng Res Dev 11 (2012) 75.Google Scholar
  3. 3.
    Muzammil K, and Shelke R D, Int Res J Eng Technol 1 (2017) 1625.Google Scholar
  4. 4.
    Nandan R, DebRoy T, and Bhadeshia H K D H, Prog Mater Sci 53 (2008) 980.CrossRefGoogle Scholar
  5. 5.
    Mishra R S, and Ma Z Y, Mater Sci Eng 50 (2005), 1.CrossRefGoogle Scholar
  6. 6.
    Attalah M M, and Salem H G, Mater Sci Eng A 391 (2005) 51.CrossRefGoogle Scholar
  7. 7.
    Humphreys F J, and Hotherly M, Recrystallization and Related Annealing Phenomena, 2nd Edition. Elsevier Publication (2004).Google Scholar
  8. 8.
    Lienert T J, Stellwag Jr. W L, Grimmett B B, and Warke R W, Weld J 82(1) (2003) 1s.Google Scholar
  9. 9.
    Chung Y D, Fujii H, Ueji R, and Tsuji N, Scr Mater 63 (2010) 223.CrossRefGoogle Scholar
  10. 10.
    Choi D H, Lee C Y, Ahn B W, Yeon Y M, Park C S H, Sato Y S, Kokawa H, and Jung S B, Sci Technol Weld Join 15 (2010) 299.CrossRefGoogle Scholar
  11. 11.
    Choi D-H, Lee C-Y, Ahn B-W, Choi J-H, Yeon Y-M, Song K, Hong S-G, Lee W-B, Kang K-B, and Jung S-B, J Mater Sci Technol 27 (2011) 127.CrossRefGoogle Scholar
  12. 12.
    Sato Y S, Yamanoi H, Kokawa H, and Furuhara T, Scr Mater 57 (2007) 557.CrossRefGoogle Scholar
  13. 13.
    Saeid T, Abdollah-Zadeh A, Assadi H, Malek Ghaini F, Mater Sci Eng A 496 (2008) 262.CrossRefGoogle Scholar
  14. 14.
    Siddiquee A N, Pandey S, and Khan N Z, Mater Today Proc 2 (2015) 1388.CrossRefGoogle Scholar
  15. 15.
    Saied T, Abdollah-Zadeh A, Shibayangi T, Ikeuchi K, and Assadi H, Mater Sci Eng A 527 (2010) 6484.CrossRefGoogle Scholar
  16. 16.
    Di Schino A, and Kenny J M, Mater Lett 57 (2003) 1830.CrossRefGoogle Scholar
  17. 17.
    Mubiayi M P, and Akinlabi E T, Int Sch Sci Res Innov 7 (2013) 635.Google Scholar
  18. 18.
    Khosrovani Nezhad A H, Shamanian M, Rezaeian A, and Atapour M, J Metall Mater Eng 27(2) (2016).Google Scholar
  19. 19.
    DebRoy T, and Bhadeshia H K D H, Sci Technol Weld Join 15(4) (2010) 266.CrossRefGoogle Scholar
  20. 20.
    Kumar A, and Jadoun R S, Int J Mech Eng Robot Res 1(1) (2014) 106.Google Scholar
  21. 21.
    Jafarzadegan M, Abdollah-Zadeh A, Feng A H, Saied T, Shen J, and Assadi H, JMST 29 (2013) 367.Google Scholar
  22. 22.
    ASTM G30-97 (2003) Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens, ASTM International (2003).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Mohd Joharif Bin Matlan
    • 1
  • Hamed Mohebbi
    • 1
    Email author
  • Srinivasa Rao Pedapati
    • 1
  • Mokhtar B. Awang
    • 1
  • Mokhtar Che Ismail
    • 1
  • Saeid Kakooei
    • 1
  • Nsikan Etim Dan
    • 1
  1. 1.Department of Mechanical EngineeringUniversiti Teknologi PETRONAS PerakSeri IskandarMalaysia

Personalised recommendations