Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 10, pp 2497–2504 | Cite as

Effect of Cold Rolling Parameters on Bond Strength of Ti Particle Embedded Al Strips

  • Zohreh Yazdani
  • Mohammad Reza Toroghinejad
  • Hossein Edris
  • Alfonso H. W. Ngan
Technical Paper
  • 18 Downloads

Abstract

Bond strength of cold roll bonded Al layers with and without Ti particles was studied. The effect of particle’s content that was placed between aluminium sheets and rolling reduction on weld efficiency and bonding was studied. Peel test was used to measure the adhesive strength between the bonded Al strips. The weld efficiency \(\eta\) of the roll bonding process was calculated. The results showed that the weld efficiency in the presence of Ti is lower than that in the absence of Ti. The surface conditions of the peeled surfaces were inspected by scanning electron microscopy. It could be concluded that by enhancing the rolling reduction up to 70%, the bonded area on the interface is increased and bonds with higher strength are produced. However, the addition of Ti particles leads to reduction of the bonded area and bond strength. Also, presence of Ti powders up to 0.5 wt%, lead to the increase of threshold deformation to 45%.

Keywords

Bond strength Roll bonding Al sheet Ti particles 

References

  1. 1.
    Pan D, Gao K, and Yu J, Mater Sci Technol 5 (1989) 934.CrossRefGoogle Scholar
  2. 2.
    Lukaschkin N D, Borissow A P, and Elrikh A I, J Mater Proc Technol 66 (1997) 246.CrossRefGoogle Scholar
  3. 3.
    Wu H Y, Lee S, and Wang J Y, J Mater Proc Technol 75 (1998) 173.CrossRefGoogle Scholar
  4. 4.
    Manesh H D and Taheri A K, J Mater Sci Technol 20 (2004) 1064.CrossRefGoogle Scholar
  5. 5.
    Le H R, Stucliffe M P F, Wang P Z, Burstein G T, Acta Mater 52 (2004) 911.CrossRefGoogle Scholar
  6. 6.
    Bay N, Metal Construct 18 (1986) 486.Google Scholar
  7. 7.
    Topic I, Höppel H W, and Göken M, Int J Mater Res 98 (2007) 320.CrossRefGoogle Scholar
  8. 8.
    Vaidyanath L R, and Milner D R, Br Weld J 7 (1960) 1.Google Scholar
  9. 9.
    Vaidyanath L R, Nicholas M G, and Milner D R, Br Weld J 6 (1959) 13.Google Scholar
  10. 10.
    Wright P K, Snow D A, and Tay C K, Met Technol 5 (1978) 24.CrossRefGoogle Scholar
  11. 11.
    Mohamed H A, and Washburn J, Weld J 30 (1975) 2.Google Scholar
  12. 12.
    Cave J A, and Williams J D, J Inst Met (Lond) 101 (1973) 203.Google Scholar
  13. 13.
    Zhang W, and Bay N, Weld J 32 (1997) 417s.Google Scholar
  14. 14.
    Zhang W, Bay N, and Wanheim T, CIRP Ann Manuf Technol 41 (1992) 293.CrossRefGoogle Scholar
  15. 15.
    Sherwood W C, and Milner D R, J Jpn Inst Met 97 (1969) 1.Google Scholar
  16. 16.
    McEwan K J B, and Miller D R, Br Weld J (1962) 406.Google Scholar
  17. 17.
    Eizadjou M, Manesh H D, and Janghorban K, Mater Des 29 (2008) 909.CrossRefGoogle Scholar
  18. 18.
    Manesh H D, and Taheri A K, Mater Des 24 (2003) 617.CrossRefGoogle Scholar
  19. 19.
    Butlin J, and Mackay C A, Sheet Metal Ind (1979) 1063.Google Scholar
  20. 20.
    Alizadeh M and Paydar M H, Mater Des 30 (2009) 82.CrossRefGoogle Scholar
  21. 21.
    Lu C, Tieu K, and Wexler D, J Mater Process Technol 209 (2009) 4830.CrossRefGoogle Scholar
  22. 22.
    Jia N, Zhu M W, Zheng Y R, He T, and Zhao X, Acta Metall Sin Eng Lett 28 (2015) 600.CrossRefGoogle Scholar
  23. 23.
    Yazdani Z, Toroghinejad M R, Edris H, Ngan A H W, J Alloys Compd 747 (2018) 217.CrossRefGoogle Scholar
  24. 24.
    Jamaati R, and Toroghinejad M R, J Mater Eng Perform 20 (2011) 191.CrossRefGoogle Scholar
  25. 25.
    Yan H, and Lenard J, Mater Sci Eng A 385 (2004) 419.CrossRefGoogle Scholar
  26. 26.
    Madaah-Hosseini H R, and Kokabi A H, Mater Sci Eng A A335 (2002) 186.CrossRefGoogle Scholar
  27. 27.
    Soltani M A, Jamaati R, and Toroghinejad M R, Mater Sci Eng A 550 (2012) 367.CrossRefGoogle Scholar
  28. 28.
    Bay N, Met Constr 18 (1986) 486.Google Scholar
  29. 29.
    Li L, Nagai K, and Yin F, Sci Technol Adv Mater 9 (2008) 11.Google Scholar
  30. 30.
    Strijbos S, Ceramurgia Int 6 (1980) 119.CrossRefGoogle Scholar
  31. 31.
    Chaudhari G P, and Acoff V, Compos Sci Technol 69 (2009) 1667.CrossRefGoogle Scholar
  32. 32.
    Tzou G Y, Tieu A K, Huang M N, Lin C Y, and We E Y, J Mater Process Technol 125 (2002) 664.CrossRefGoogle Scholar
  33. 33.
    Yong J, Dashu P, Dong L, and Luoxing L, J Mater Process Technol 105 (2000) 32.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Mechanical EngineeringThe University of Hong KongHong KongChina

Personalised recommendations