Transactions of the Indian Institute of Metals

, Volume 71, Issue 10, pp 2415–2422 | Cite as

Effects of Ni60WC25 powder content on the microstructure and wear properties of WCp reinforced surface metal matrix composites

  • Yudong Sui
  • Lina HanEmail author
  • Yehua JiangEmail author
  • Zulai Li
  • Quan Shan
Technical Paper


The vacuum evaporative pattern casting technique was used to fabricate WCp reinforced surface metal matrix composites in order to study the effects of Ni60WC25 powder content on the microstructure and wear properties of it. The results showed that the Ni60WC25 powders weakened the stability of WC particles and reacted with metal matrix at the interfacial regions in the composite. Diffusion kinetics and Gibbs free energy were calculated from the interactions between WC particles and matrix. It was found that adding 35 vol% Ni60WC25 alloy powder to composites led to the formation of Fe3W3C phases and complete dissolution of WC particles. The wear properties of composites with different Ni60WC25 alloy powder content were tested by the MLD-10 type tester. WC particles and Fe3W3C phases could protect the matrix and the matrix could support WC particles and Fe3W3C phases during wear processing.


Particle-reinforced composites Interfacial reaction Vacuum evaporative pattern casting (V-EPC) Abrasive wear 



This work was supported by the National Natural Science Foundation of China (Nos. 51571103, 51561018, 51501079), China Postdoctoral Science Foundation (Nos. 2017M623319XB, 2018T110999), Yunnan Provincial Department of Education Science Research Fund Project (No. 2018JS033), and The Analysis and Testing Foundation of Kunming University of Science and Technology.


  1. 1.
    Kambakas K, Tsakiropoulos P, Mater Sci Eng A 413414 (2005) 538.CrossRefGoogle Scholar
  2. 2.
    Niu L, Hojamberdiev M, Xu Y, J Mater Process Tech 210 (2010) 1986.CrossRefGoogle Scholar
  3. 3.
    Tong X, Li F, Kuang M, Ma W, Chen X, Liu M, Appl Surf Sci 258 (2012) 3214.CrossRefGoogle Scholar
  4. 4.
    Li Z, Jiang Y, Zhou R, Gao F, Shan Q, Tan J, J Alloys Compd 596 (2014) 48.CrossRefGoogle Scholar
  5. 5.
    Zhao M, Liu A, Guo M, Liu D, Wang Z, Wang C, Surf Coat Tech 201 (2006) 1655.CrossRefGoogle Scholar
  6. 6.
    Liu A, Guo M, Zhao M, Wang C, Surf Coat Tech 201 (2007) 7978.CrossRefGoogle Scholar
  7. 7.
    Lou D, Hellman J, Luhulima D, Liimatainen J, Lindroos V K, Mater Sci Eng A A340 (2003) 55.Google Scholar
  8. 8.
    Qiao Y, Fischer T E, Dent A, Surf Coat Tech 172 (2003) 24.CrossRefGoogle Scholar
  9. 9.
    Li Z, Jiang Y, Zhou R, Lu D, Zhou R, Wear 262 (2007) 649.CrossRefGoogle Scholar
  10. 10.
    Li Y, Zhu Z, He Y, Chen H, Jiang C, Han D, Li J, J Mater Process Tech 238 (2016) 15.CrossRefGoogle Scholar
  11. 11.
    Sui Y, Han L, Jiang Y, Ceram Int 44 (2018) 14811.CrossRefGoogle Scholar
  12. 12.
    Wang J, Li L, Tao W, Opt Laser Tech 82 (2016) 170.CrossRefGoogle Scholar
  13. 13.
    Sui Y, Zhou M, Jiang Y, J Alloys Compd 741 (2018) 1169.CrossRefGoogle Scholar
  14. 14.
    Zhang G, Xing J, Gao Y, Wear 260 (2006) 728.CrossRefGoogle Scholar
  15. 15.
    Shan Q, Li Z, Jiang Y, Zhou R, Sui Y, J Mater Sci Tech 29 (2013) 720.CrossRefGoogle Scholar
  16. 16.
    Li Z, Jiang Y, Zhou R, Chen Z, J Mater Res 29 (2014) 778.CrossRefGoogle Scholar
  17. 17.
    Liu H, Wang C, Zhang X, Jiang Y, Cai C, Tang S, Surf Coat Tech 228 (2013) S296.CrossRefGoogle Scholar
  18. 18.
    Fernández M R, García A, Cuetos J M, González R, Noriega A, Cadenas M, Wear 324325 (2015) 80.CrossRefGoogle Scholar
  19. 19.
    Wu P, Zhou C Z, Tang X N, Surf Coat Tech 166 (2003) 84.CrossRefGoogle Scholar
  20. 20.
    Ye D L, Hu J H, Handbook of the thermodynamic Data of Inorganic Substances, Metallurgical Industry Press, Peking of China (2002).Google Scholar
  21. 21.
    Li Z, Wei H, Shan Q, Jiang Y, Zhou R, J Mater Res 31 (2016) 2376.CrossRefGoogle Scholar
  22. 22.
    Zhang S, Alloy Steel, Metallurgical Industry Press, Peking of China (1981).Google Scholar
  23. 23.
    Fan T, Yang G, Zhang D, Mater Sci Eng A 394 (2005) 327.CrossRefGoogle Scholar
  24. 24.
    Tao D P, Metall Mater Trans B 32 (2001) 1205.CrossRefGoogle Scholar
  25. 25.
    Miedema A R, de Châtel P F, de Boer F R, Physica B+C 100 (1980) 1.CrossRefGoogle Scholar
  26. 26.
    Zhou R, Jiang Y, Lu D, Wear 255 (2003) 134.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations