Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 10, pp 2403–2413 | Cite as

Hot Corrosion Behaviour of Refractory and Rare Earth Oxide Reinforced CoCrAlY APS Coatings at 700 °C

  • H. S. Nithin
  • V. Desai
  • M. R. Ramesh
Technical Paper
  • 77 Downloads

Abstract

This paper investigates cyclic hot corrosion of plasma sprayed CoCrAlY + Al2O3 + YSZ (C1) and CoCrAlY + CeO2 (C2) composite coatings on MDN 321 and Superni 76 substrates in molten salt (Na2SO4-60%V2O5) environment exposed to 700 °C. Weight change technique is used to evaluate the corrosion performance. Both C1 and C2 coatings showed better corrosion resistance than uncoated alloy. Both the coatings showed linear weight gain during the initial cycles and parabolic weight gain nature with subsequent hot corrosion cycles. The parabolic rate constant (Kp) of C1 and C2 coating was observed to be in the range 0.29–0.32 × 10−10 g2 cm−4 s−1 and 1.0–1.13 × 10−10 g2 cm−4 s−1 respectively. In C1 coating, the globular and continuously packed structure on the corroded surface having CoO, Cr2O3, CoCr2O4 and CoAl2O4 spinel oxides provided superior hot corrosion resistance. While in case of C2 coating, the outward growth of CeVO4 irregular crystals as a corrosion product of CeO2 and V2O5 salt deteriorated the oxide scales resulting in higher corrosion rate.

Keywords

Composite coatings Hot corrosion kinetics Plasma spray process Superalloys Oxides/spinel oxides 

References

  1. 1.
    James W, and Rajagopalan S, Structural Alloys for Power Plants, (ed) Shirzadi A, and Jackson S, Woodhead Publishing Series in Energy (2014), p 3.Google Scholar
  2. 2.
    Becker W T, and Shipley R J, ASM Metals Handbook: Vol. 11. Failure analysis and prevention, ASM Publication (2002), p. 1533.Google Scholar
  3. 3.
    Gurrappa I, Surf. Coat. Technol. 139 (2001) 272.CrossRefGoogle Scholar
  4. 4.
    Doolabi D S, Rahimipour M R, Alizadeh M, Pouladi S, Hadavi S M, and Vaezi M R, Vacuum 135 (2017) 22.CrossRefGoogle Scholar
  5. 5.
    Ramesh M R, Prakash S, Nath S K, Sapra P K, and Venkataraman B, Wear 269 (2010) 197.CrossRefGoogle Scholar
  6. 6.
    Lu J, Zhu S, Wang F, Surf. Coat. Technol. 205 (2011) 5053.CrossRefGoogle Scholar
  7. 7.
    Cai J, Yang S Z, Ji L, Guan Q F, Wang Z P, and Han Z Y, Surf. Coat. Technol. 251 (2014) 2017.CrossRefGoogle Scholar
  8. 8.
    Utu I D, Marginean G, Hulka I, Serban V A, Cristea D, Int. J. Refract. Met. Hard Mater. 51 (2015) 118.CrossRefGoogle Scholar
  9. 9.
    Eliaz N, Shemesh G, and Latanision R M, Eng. Fail. Anal. 9 (2002) 31.CrossRefGoogle Scholar
  10. 10.
    Baiamonte L, Marra F, Gazzola S, Giovanetto P, Bartuli C, Valente T, and Pulci G, Surf. Coat. Technol. 295 (2016) 78.CrossRefGoogle Scholar
  11. 11.
    Nicholls J. R, Simms N J, Chan W Y and Evans H E, Surf. Coat. Technol. 149 (2002) 236.CrossRefGoogle Scholar
  12. 12.
    Bolelli G, Candeli A, Lusvarghi L, Ravaux A, Cazes K, Denoirjean A, and Valette S, Wear 344 (2015) 69.CrossRefGoogle Scholar
  13. 13.
    Cabral Miramontes J A, Gaona Tiburcio C, Almeraya Calderón F, Estupiñan Lopez F H, Pedraza Basulto G K, and Poblano Salas C A, Int. J. Corr (2014) 8.Google Scholar
  14. 14.
    Praveen A S, Sarangan J, Suresh S, and Subramanian J S, Int. J. Refract. Met. Hard Mater. 52 (2015) 209.CrossRefGoogle Scholar
  15. 15.
    Kim H J, Hwang S Y, Lee C H, and Juvanon P, Surf. Coat. Technol.172 (2003) 262.CrossRefGoogle Scholar
  16. 16.
    Ogawa K, Ito K, Shoji T, Seo D W, Tezuka H, and Kato H, J. Therm. Spray Technol. 15 (2006) 640.CrossRefGoogle Scholar
  17. 17.
    Zhou X, and Ouyang C, Surf. Coat. Technol. 315 (2017) 67.CrossRefGoogle Scholar
  18. 18.
    Wang Y, Yang Y, and Yan M F, Wear 263 (2007) 371.CrossRefGoogle Scholar
  19. 19.
    Song B, Dong S, Liao H, and Coddet C, Surf. Coat. Technol. 268 (2015) 24.CrossRefGoogle Scholar
  20. 20.
    He K, Chen J, Weng W, Li C, and Li, Q, Vacuum 151 (2018) 209.CrossRefGoogle Scholar
  21. 21.
    Xiao J K, Zhang W, Liu L. M, Gan X P, Zhou K C, and Zhang C, Surf. Coat. Technol. 337 (2018) 159.CrossRefGoogle Scholar
  22. 22.
    Otero E, Merino M C, Pardo A, Biezma M V, and Buitrago G, Proceedings of 10th ICMC 4 (1987) 3583.Google Scholar
  23. 23.
    Ramesh M R, Prakash S, Nath S K, Sapra P K and Krishnamurthy N, J. Therm. Spray Technol. 20 (2011) 992.CrossRefGoogle Scholar
  24. 24.
    Somasundaram B, Kadoli R, and Ramesh M R, J. Therm. Spray Technol. 23 (2014) 1000.CrossRefGoogle Scholar
  25. 25.
    McAlister A J, Alloy Phase Diagram, (ed) Hugh B, United States of America (1989), p 288.Google Scholar
  26. 26.
    Sampath S, Jiang X Y, Matejicek J, Leger A C, and Vardelle A, Mater. Sci. Eng. A 272 (1999) 181.CrossRefGoogle Scholar
  27. 27.
    Zhu L, Zhu S, and Wang F, Appl. Surf. Sci. 268 (2013) 103.CrossRefGoogle Scholar
  28. 28.
    Singh H, Kaur M, and Prakash S., J. Therm. Spray Technol. 6 (2016) 1192.CrossRefGoogle Scholar
  29. 29.
    Luthra K L, J. Electrochem. Soc. 132 (1985) 1293CrossRefGoogle Scholar
  30. 30.
    Zhang T, Huang C, Lan H, Du L, and Zhang W, J. Therm. Spray Technol. 6 (2016) 1208.CrossRefGoogle Scholar
  31. 31.
    Afrasiabi A, Saremi M, and Kobayashi A, Mater. Sci. Eng. A 478 (2008) 264.CrossRefGoogle Scholar
  32. 32.
    Jones R L, Williams C E and Jones A J, J. Electrochem. Soc. 133 (1986) 227.CrossRefGoogle Scholar
  33. 33.
    Nejati M, Rahimipour M R, and Mobasherpou I, Ceram. Int. 40 (2014) 4579.CrossRefGoogle Scholar
  34. 34.
    Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, and Jamali H, Mater. Des. 57 (2014) 336.CrossRefGoogle Scholar
  35. 35.
    Afrasiab A, and Kobayashi A, Vacuum 88 (2013) 103.CrossRefGoogle Scholar
  36. 36.
    Nithin H S, Desai V, and Ramesh M R, J. Mater. Eng. Perform. 26 (2017) 5251.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.National Institute of Technology KarnatakaSurathkal, MangaloreIndia
  2. 2.REVA University BengaluruBengaluruIndia

Personalised recommendations