Transactions of the Indian Institute of Metals

, Volume 71, Issue 10, pp 2387–2394 | Cite as

Evaluation of Microstructural Features of HVOF Sprayed Ni–20Al Coatings

  • Sekar SaladiEmail author
  • P. V. Ramana
  • Piyuskumar B. Tailor
Technical Paper


The present study evaluates the microstructural features of high velocity oxy-fuel (HVOF) sprayed Ni–20Al coatings with liquefied petroleum gas (LPG) as fuel. The Ni–20Al coatings are commonly used for bond coat applications and as high temperature oxidation resistant coating. The quality of the deposited coating has been evaluated in terms of porosity, oxide content, surface roughness, micro-hardness, composition and morphology (surface and cross-sectional). The results indicate that, it is possible to develop dense Ni–20Al coatings with low oxide and porosity content along with high surface roughness using HVOF technology. Importantly, HVOF sprayed Ni–20Al coatings show better quality as compared to air plasma spray and can be used as an alternative to VPS in terms of quality to cost ratio for bond coat applications.


HVOF Ni–20Al Coatings Bond coats Surface roughness 



The authors would like to thank Gujarat Council on Science and Technology (GUJCOST) for providing financial assistance through MRP scheme. Authors also wish to thank Dr. Mukul Gupta of UGC-DAE Consortium for Scientific Research, Indore for performing XRD analysis and Mr. Ragesh Bateriwala, Keepsake Engineering Consultancy Pvt. Limited, Ahmedabad, Gujarat, for providing the HVOF facility.


  1. 1.
    Saladi S, Menghani J, Prakash S, J Mater Engg Perform 23 (2014) 4394.CrossRefGoogle Scholar
  2. 2.
    Chang J T, Davison A, He J L, Matthews A, Surf Coat Technol 200 (2006) 5877.CrossRefGoogle Scholar
  3. 3.
    Zhong D, Moore J J, Ohno T R, Disam J, Thiel S, Dahan I, Surf Coat Technol 130 (2000) 33.CrossRefGoogle Scholar
  4. 4.
    Singh H, Prakash S, Puri D, Mater Sci Eng A 444 (2007) 242.CrossRefGoogle Scholar
  5. 5.
    Hearley J A, Little J A, Sturgeon A J, Wear 233–235 (1999) 328.CrossRefGoogle Scholar
  6. 6.
    Khor K A, Loh N L, J Therm Spray Technol 3 (1994) 57.CrossRefGoogle Scholar
  7. 7.
    Sampath S, Jiang X Y, Matejicek J, Prchlik L, Kulkarni A, Vaidya A, Mater Sci Eng A 364 (2004) 216.CrossRefGoogle Scholar
  8. 8.
    Mahesh R A, Jayaganthan R, Prakash S, J Alloys Compd 460 (2008) 220.CrossRefGoogle Scholar
  9. 9.
    Mahesh R A, Jayaganthan R, Prakash S, Mater Sci Eng A 475 (2008) 327.CrossRefGoogle Scholar
  10. 10.
    Mahesh R A, Jayaganthan R, Prakash S, Surf Eng 26 (2010) 413.CrossRefGoogle Scholar
  11. 11.
    Saladi S, Menghani J V, Prakash S, J Therm Spray Technol 24 (2015) 778.CrossRefGoogle Scholar
  12. 12.
    Sidhu B S, Prakash S, J Mater Engg Perform 14 (2005) 356.CrossRefGoogle Scholar
  13. 13.
    Ward D, Gupta A, Saraf S, Zhang C, Sakthivel T S, Barkam S, Agarwal A, Seal S, Carbon 105 (2016) 529.CrossRefGoogle Scholar
  14. 14.
    Senderowski C, Bojar Z, J Therm Spray Technol 18 (2009) 435.CrossRefGoogle Scholar
  15. 15.
    Senderowski C, Bojar Z, Surf Coat Technol 202 (2008) 3538.CrossRefGoogle Scholar
  16. 16.
    Senderowski C, Bojar Z, Wołczyński W, Pawłowski A, Intermetallics 18 (2010) 1405.CrossRefGoogle Scholar
  17. 17.
    Senderowski C, Zasada D, Durejko T, Bojar Z, Powder Technology 263 (2014) 96.CrossRefGoogle Scholar
  18. 18.
    Pawlowski A, Senderowski C, Bojar Z, Faryna M, Arch Metall Mater 55 (2010) 1061.CrossRefGoogle Scholar
  19. 19.
    Sampath S, Bancke G A, Herman H, Rangaswamy S, Surf Eng 5 (1989) 293.CrossRefGoogle Scholar
  20. 20.
    Culha O, Celik E, Ak Azem N F, Birlik I, Toparli M, Turk A, J Mater Process Technol 204 (2008) 221.CrossRefGoogle Scholar
  21. 21.
    Hearley J A, Little J A, Sturgeon A J, Surf Coat Technol 123 (2000) 210.CrossRefGoogle Scholar
  22. 22.
    Vaßen R, Kerkhoff G, Stöver D, Mater Sci Eng A 303 (2001) 100.CrossRefGoogle Scholar
  23. 23.
    Rajasekaran B, Mauer G, Vaßen R, J Therm Spray Technol 20 (2011) 1209.CrossRefGoogle Scholar
  24. 24.
    Lugscheider E, Herbst C, Zhao L, Surf Coat Technol 108–109 (1998) 16.CrossRefGoogle Scholar
  25. 25.
    Mrdak M R, Military Technical Courier 61 (2013) 7.Google Scholar
  26. 26.
    Scrivani A, Bardi U, Carrafiello L, Lavacchi A, Niccolai F, Rizzi G, J Therm Spray Technol 12 (2003) 504.CrossRefGoogle Scholar
  27. 27.
    Schmitt-Thomas K G, Haindl H, Fu D, Surf Coat Technol 94-95 (1997) 149.CrossRefGoogle Scholar
  28. 28.
    Lekatou A, Zois D, Grimanelis D, Thin Solid Films 516 (2008) 5700.CrossRefGoogle Scholar
  29. 29.
    Mahesh R A, Jayaganthan R, Prakash S, J Mater Process Technol 209 (2009) 3501.CrossRefGoogle Scholar
  30. 30.
    Sidhu T S, in: Ph D, Department of Metallurgical and Materials Engineering, IIT Roorkee, 2006.Google Scholar
  31. 31.
    Singh B, in: Ph D, Department of Metallurgical and Materials Engineering, IIT, Roorkee, 2003.Google Scholar
  32. 32.
    Sidhu T S, Prakash S, Agrawal R D, J Mater Engg Perform 15 (2006) 122.CrossRefGoogle Scholar
  33. 33.
    Sadeghimeresht E, Markocsan N, Nylén P, J Therm Spray Technol 25 (2016) 1604.CrossRefGoogle Scholar
  34. 34.
    Tucker Jr R C, in: Handbook of Deposition Technologies for Films and Coatings, Bunshah, R. F. Ed., William Andrew Publ./Noyes, 1994.Google Scholar
  35. 35.
    Ramesh M R, Prakash S, Nath S K, Sapra P K, Venkataraman B, Wear 269 (2010) 197.CrossRefGoogle Scholar
  36. 36.
    Beshish G K, Florey C W, Worzala F J, Lenling W J, J Therm Spray Technol 2 (1993) 35.CrossRefGoogle Scholar
  37. 37.
    Yamazaki Y, Arai M, Miyashita Y, Waki H, Suzuki M, J Therm Spray Technol 22 (2013) 1358.CrossRefGoogle Scholar
  38. 38.
    Toparli M, Sen F, Culha O, Celik E, J Mater Process Technol 190 (2007) 26.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSVITVasadIndia

Personalised recommendations