Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 10, pp 2349–2360 | Cite as

The Fabrication and Characterization of a TiB2/Ni Composite Using Spark Plasma Sintering

  • Miao Wang
  • Wen-xian Wang
  • Jun Zhou
  • Hong-sheng Chen
  • Ze-xin Chang
Technical Paper
  • 88 Downloads

Abstract

Ni matrix composites synergistically reinforced by TiB2 particles were prepared by spark plasma sintering. According to the Nelsone Riley method and Debye–Scherrer formula, the driving force for the growth of crystallite in sintered TiB2/Ni composites was discussed by using X-ray diffraction technique to analyse the dislocation density and lattice strain of composite powders. TiB2/Ni composites not only showed great increase in tensile strength but also possessed perfect ductility. Tensile results showed that Ni–3TiB2 (3 vol% TiB2) showed an increase in tensile strength, furthermore, contained an acceptable elongation of ~ 45%. Besides, the strengthening mechanism was discussed later. The corrosion resistance test of TiB2/Ni composites was performed by electrochemical method in 3.5 wt% NaCl solution. Results showed that the corrosion resistance of pure Ni sample was superior to that of other specimens. SEM of tensile fracture revealed that debonding phenomenon between TiB2 and Ni was hindered.

Keywords

SPS Mechanical property Strengthening mechanism Corrosion 

Notes

Acknowledgements

The authors gratefully acknowledge the generous support for this study from National Natural Science Foundation of China (Grant No. 51775366) and National Natural Science Foundation of China (Grant No. 51405324).

References

  1. 1.
    Allen T, Busby J, Meyer M, and Petti D, Mater. Today 13 (2010) 14.CrossRefGoogle Scholar
  2. 2.
    Yvon P, and Carré F, J Nucl Mater 385 (2009) 217.CrossRefGoogle Scholar
  3. 3.
    Mathieu L, Heuer D, Brissot R, Garzenne C, Le Brun C, Lecarpentier D, Liatard E, Loiseaux JM, Méplan O, Merle-Lucotte E, Nuttin A, Walle E, and Wilson J, Prog Nucl Energy 48 (2006) 664.CrossRefGoogle Scholar
  4. 4.
    Murty K L, and Charit I, J Nucl Mater 383 (2008) 189.CrossRefGoogle Scholar
  5. 5.
    Mansur L K, Rowcliffe A F, Nanstad R K, Zinkle S J, Corwin W R, and Stoller R E, J Nucl Mater 329–333 (2004) 166.CrossRefGoogle Scholar
  6. 6.
    Carreño-Gallardo C, Estrada-Guel I, López-Meléndez C, and Martínez-Sánchez R, J Alloys Compd 586 (2014) S68.CrossRefGoogle Scholar
  7. 7.
    Yabuuchi K, Tsuda N, Kimura A, Morisada Y, Fujii H, Serizawa H, Nogami S, Hasegawa A, and Nagasaka T, Mater Sci Eng A 595 (2014) 291.CrossRefGoogle Scholar
  8. 8.
    El-Dasher B, Farmer J, Ferreira J, de Caro M S, Rubenchik A, and Kimura A, J Nucl Mater 419 (2011) 15.CrossRefGoogle Scholar
  9. 9.
    Nahme H, Lach E, and Tarrant A, J Mater Sci 44 (2009) 463.CrossRefGoogle Scholar
  10. 10.
    Tu J P, Wang N Y, Yang Y Z, Qi W X, Liu F, Zhang X B, Lu H M, and Liu M S, Mater Lett 52 (2002) 448.CrossRefGoogle Scholar
  11. 11.
    Tu J P, Rong W, Guo S Y, and Yang Y Z, Wear 255 (2003) 832.CrossRefGoogle Scholar
  12. 12.
    Nandam S H, Sankaran S, Murty B S, Trans Indian Inst Met 64 (2011) 123.CrossRefGoogle Scholar
  13. 13.
    Brabazon D, Browne D J, and Carr A J, Mater Sci Eng A 326 (2002) 370.CrossRefGoogle Scholar
  14. 14.
    Serquis A, Civale L, Hammon D L, Liao X Z, Coulter J Y, Zhu Y T, Jaime M, Peterson D E, Mueller F M, Nesterenko V F, and Gu Y, Appl Surf Sci 82 (2003) 2847.Google Scholar
  15. 15.
    Praveen S, Anupam A, Sirasani T, Murty B S, and Kottada R S, Trans Indian Inst Met 66 (2013) 369.CrossRefGoogle Scholar
  16. 16.
    Pillari L K, Shukla A K, Murty S V S N, and Umasankar V, Trans Indian Inst Met (2017) 1.Google Scholar
  17. 17.
    Balaji V S, and Kumaran S, Trans Indian Inst Met 66 (2013) 339.CrossRefGoogle Scholar
  18. 18.
    Zhang Z-H, Liu Z-F, Lu J-F, Shen X-B, Wang F-C, and Wang Y-D, Scr Mater 81 (2014) 56.CrossRefGoogle Scholar
  19. 19.
    Hulbert D M, Anders A, Andersson J, Lavernia E J, and Mukherjee A K, Scr Mater 60 (2009) 835.CrossRefGoogle Scholar
  20. 20.
    Song X, Liu X, and Zhang J, J Am Ceram Soc 89 (2006) 494.CrossRefGoogle Scholar
  21. 21.
    Chen W, Anselmi-Tamburini U, Garay J E, Groza J R, and Munir Z A, Mater Sci Eng A 394 (2005) 132.CrossRefGoogle Scholar
  22. 22.
    Nelson J B, and Riley D P, Proc Phys Soc 57 (1945) 160.CrossRefGoogle Scholar
  23. 23.
    Cullity B D, Am J Phys 25 (1957) 394.CrossRefGoogle Scholar
  24. 24.
    Suryanarayana C, Prog Mater Sci 46 (2001) 1.CrossRefGoogle Scholar
  25. 25.
    Azimi M, and Akbari G H, J Alloys Compd 509 (2011) 27.CrossRefGoogle Scholar
  26. 26.
    Eckert J, Nanostruct Mater 6 (1995) 413.CrossRefGoogle Scholar
  27. 27.
    Simbi D J, and Scully J C, Mater Lett 26 (1996) 35.CrossRefGoogle Scholar
  28. 28.
    Shen B L, Itoi T, Yamasaki T, and Ogino Y, 2000.Google Scholar
  29. 29.
    Williamson G K, and Smallman R E. III, Philos Mag 1 (1956) 34.CrossRefGoogle Scholar
  30. 30.
    Zhao S, Song X, Zhang J, and Liu X, Mater Sci Eng A 473 (2008) 323.CrossRefGoogle Scholar
  31. 31.
    Liu X, Wang H, Yang K, Sui A, Wang Y, Yu G, Lu Z, and Wang J, J Musc Res 11 (2008) 1.CrossRefGoogle Scholar
  32. 32.
    Goh C S, Wei J, Lee L C, and Gupta M, Acta Mater 55 (2007) 5115.CrossRefGoogle Scholar
  33. 33.
    Narutani T, and Takamura J, Acta Mater 39 (1991) 2037.CrossRefGoogle Scholar
  34. 34.
    Zhou F, Lee J, Dallek S, and Lavernia E J, J Mater Res 16 (2011) 3451.CrossRefGoogle Scholar
  35. 35.
    Miller W S, and Humphreys F J, Scr Mater 25 (1991) 33.CrossRefGoogle Scholar
  36. 36.
    Nguyen Q B, and Gupta M, Compos Sci Technol 68 (2008) 2185.CrossRefGoogle Scholar
  37. 37.
    Jiang L, Yang H, Yee J K, Mo X, Topping T, Lavernia E J, and Schoenung J M, Acta Mater 103 (2016) 128.CrossRefGoogle Scholar
  38. 38.
    Trojanová Z, Drozd Z, Kúdela S, Száraz Z, and Lukáč P, Compos Sci Technol 67 (2007) 1965.CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Topping T, Li Y, Vogt R, Zhou Y, Haines C, Paras J, Kapoor D, Schoenung J M, and Lavernia E J, Scr Mater 65 (2011) 652.CrossRefGoogle Scholar
  40. 40.
    Sulima I, Kowalik R, and Hyjek P, J Alloys Compd 688 (2016) 1195.CrossRefGoogle Scholar
  41. 41.
    Bouzek K, and Roušar I, J Appl Electrochem 26 (1999) 919.CrossRefGoogle Scholar
  42. 42.
    Zhu H B, Hui L, and Zhuo X L, Surf Coat Technol 235 (2013) 620.Google Scholar
  43. 43.
    Xi L, Kaban I, Nowak R, Bruzda G, Sobczak N, Stoica M, and Eckert J, J Mater Eng Perform 25 (2016) 3204.CrossRefGoogle Scholar
  44. 44.
    Milošev I, Kosec T, and Strehblow H H, Electrochim Acta 53 (2008) 3547.CrossRefGoogle Scholar
  45. 45.
    Chua B W, Lu L, and Lai M O, Compos Struct 47 (1999) 595.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Shanxi Key Laboratory of Advanced Magnesium-based MaterialsTaiyuanChina
  3. 3.College of Mechanical EngineeringTaiyuan University of TechnologyTaiyuanChina
  4. 4.Department of Mechanical EngineeringPennsylvania State University Erie, The Behrend CollegeErieUSA

Personalised recommendations