Advertisement

Effects of Tensile Overload on Crack Initiation Life and Fatigue Crack Growth in Notched Specimens

  • Rahman Seifi
  • Mohammad Reza Mohammadi
Technical Paper
  • 15 Downloads

Abstract

The high amplitude loads that are usually known as overload have different effects on fatigue behavior of the specimens. These effects depend on overload parameters, specimen geometry and applied time; whether crack exist or not. Single tensile overload was applied before crack initiation. Overloads with different ratios versus the applied load and constant amplitude loads were applied on the V-notched samples made by AA 2024-T3 to characterize the fatigue behavior. Crack growth rule and finite element analysis were employed to predict the sample behavior. Weight function methods were used to determine the effects of induced residual stress on effective range of stress intensity factor, ΔKeff. There were good agreement between predicted and experimental results which proved the capability of the used method to predict the fatigue crack initiating from the notch root in presence of the residual stresses. Results revealed that the crack initiation life was improved considerably versus the overload ratio. Also, it was observed that the crack growth life increased by increasing the overload ratio. The improving effect of the overload on the crack initiation stage was found to be remarkably higher than its effect in growth stage.

Keywords

Overload Crack initiation life Notched sample Crack growth life 

References

  1. 1.
    Palmgren A, Z Ver Dtsch Ing 68 (1924) 339.Google Scholar
  2. 2.
    Miner M, J Appl Mech 12 (1945) A159.Google Scholar
  3. 3.
    Eftekhari M, Fatemi A, and Khosrovaneh A, SAE Int J Mater Manuf 9 (2016) 585.Google Scholar
  4. 4.
    Fissolo A, Gourdin C, Chen Y, Perez G, and Stelmaszyk J M, Int J Fatigue 77 (2015) 199.CrossRefGoogle Scholar
  5. 5.
    Kamaya M, and Kawakubo M, Int J Fatigue 81 (2015) 10.CrossRefGoogle Scholar
  6. 6.
    Tao J X, Smith S, and Duff A, Int J Fatigue 31 (2009) 1837.CrossRefGoogle Scholar
  7. 7.
    Theil N, Int J Fatigue 90 (2016) 23.CrossRefGoogle Scholar
  8. 8.
    Fatemi A, and Yang L, Int J Fatigue 20 (1998) 9.CrossRefGoogle Scholar
  9. 9.
    Agrawal R, Veerababu J, Goyal S, Sandhya R, Uddanwadiker R, and Padole P, Trans Indian Inst Met 69 (2016) 457.CrossRefGoogle Scholar
  10. 10.
    Majzoobi G H, and Daemi N, Trans Indian Inst Met 63 (2010) 547.CrossRefGoogle Scholar
  11. 11.
    Sadananda K, and Vasudevan A K, Trans Indian Inst Met 69 (2016) 359.CrossRefGoogle Scholar
  12. 12.
    Susmel L, and Taylor D, Int J Fatigue 38 (2012) 7.CrossRefGoogle Scholar
  13. 13.
    Susmel L, and Taylor D, Eng Fract Mech 98 (2013) 64.CrossRefGoogle Scholar
  14. 14.
    Bichler C, and Pippan R, Eng Fract Mech 74 (2007) 1344.CrossRefGoogle Scholar
  15. 15.
    Ochensberger W, and Kolednik O, Int J Fatigue 83 (2016) 161.CrossRefGoogle Scholar
  16. 16.
    Wang C, Wang X, Ding Z, Xu Y, and Gao Z, Int J Fatigue 78 (2015) 11.CrossRefGoogle Scholar
  17. 17.
    Schijve J, Fatigue Crack Propagation in Light Alloy Sheet Material and Structures, NLL (1960).Google Scholar
  18. 18.
    Von Euw E, Hertzberg R, and Roberts R, Stress Analysis and Growth of Cracks, ASTM STP 513. ASTM International (1972), p 230.Google Scholar
  19. 19.
    Seifi R, Mahmoudi A H, and Babalhavaeji M, Int J Fract 169 (2011) 199.CrossRefGoogle Scholar
  20. 20.
    Lei Y, O’Dowd N P, and Webster G A, Int J Fract 106 (2000) 195.CrossRefGoogle Scholar
  21. 21.
    Esmaeili F, Zehsaz M, Chakherlou T N, and Hasanifard S, Trans Indian Inst Met 67 (2014) 581.CrossRefGoogle Scholar
  22. 22.
    Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, and Miller W S, Mater Sci Eng A 280 (2000) 102.CrossRefGoogle Scholar
  23. 23.
    ASTM, E., 112. Standard Test Methods for Determining Average Grain Size (1996).Google Scholar
  24. 24.
    Association, A., International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, The Aluminum Association, Arlington, VA (2009).Google Scholar
  25. 25.
    Standard, A., E466: Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue Test of Metallic Materials, vol. 03.01, Annual Book of ASTM Standards, West Conshohocken (2002).Google Scholar
  26. 26.
    Standard, A., E8,” Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards (2004) 3, p 57.Google Scholar
  27. 27.
    Chen G, Wan K C, Gao M, Wei R P, and Flournoy T H, Mater Sci Eng A 219 (1996) 126.CrossRefGoogle Scholar
  28. 28.
    Rice R C, Metallic Materials Properties Development and Standardization, National Technical Information Service (2003).Google Scholar
  29. 29.
    Benedetti M, Fontanari V, Santus C, and Bandini M, Int J Fatigue 32 (2010) 1600.CrossRefGoogle Scholar
  30. 30.
    Parker A, in Residual Stress Effects in Fatigue, ASTM International (1982)Google Scholar
  31. 31.
    LaRue J, and Daniewicz S, Int J Fatigue 29 (2007) 508.CrossRefGoogle Scholar
  32. 32.
    Liljedahl C, Zanellato O, Fitzpatrick M E, Lin J, and Edwards L, Int J Fatigue 32 (2010) 735.CrossRefGoogle Scholar
  33. 33.
    Lube T, Fett T, Fünfschilling S, Hoffmann M J, and Oberacker R, Int J Fract 175 (2012) 65.CrossRefGoogle Scholar
  34. 34.
    Rice J R, Int J Solids Struct 8 (1972) 751.CrossRefGoogle Scholar
  35. 35.
    Wu X-R, and Carlsson J, Weight Functions and Stress Intensity Factor Solutions, Pergamon (1991).Google Scholar
  36. 36.
    Tong D-H, and Wu X-R, Chin J Aeronaut 27 (2014) 291.CrossRefGoogle Scholar
  37. 37.
    Taylor D, The Theory of Critical Distances: A New Perspective in Fracture Mechanics, Elsevier (2010).Google Scholar
  38. 38.
    International, A., Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International (2011).Google Scholar
  39. 39.
    Zuidema J, Square and Slant Fatigue Crack Growth in Al 2024, Delft University Press (1995).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringBu-Ali Sina UniversityHamedanIran

Personalised recommendations