Effect of Intermetallic Compounds on Microstructure and Mechanical Properties of Hot Roll Bonding Titanium to Steel

  • Mohsen Saboktakin Rizi
  • Hamid Reza Javadinejad
  • Eiman Aghababaei
  • Marzieh Ebrahimian
Technical Paper
  • 23 Downloads

Abstract

Titanium cladding on steel leads to the creation of properties such as resistance to corrosion that contribute to a widespread application of this metal composite in industries such as nuclear, chemical, aerospace, and biomaterial. One of the solid-state bonding methods to apply such a clad is to use the roll bonding method. In this paper, quality of the titanium cladded on carbon steel was studied in terms of metallurgical, mechanical properties and the effect of the copper interlayer on the metallurgical properties of bonding. The interface between the clad and the base metal was studied using a scanning electron microscope and light microscope and the phases formed were identified by X-ray diffraction analysis. The results showed that an increase in the bonding temperature increased the thickness of the intermetallic compounds, increased the hardness at close distances to the interface, and reduced the adhesion of the titanium cladded to the base metal.

Keywords

Titanium Roll bonding Steel Mechanical properties Physical properties 

References

  1. 1.
  2. 2.
    Velmurugan C, Senthilkumar V, Sarala S, and Arivarasan J, J Mater Process Technol 234 (2016) 272.CrossRefGoogle Scholar
  3. 3.
    Yongqiang D, Guangmin S, and Lijing Y, Rare Metal Mater Eng 44 (2015) 1041.CrossRefGoogle Scholar
  4. 4.
    Wang F-L, Sheng G-M, and Deng Y-Q, Rare Metals 35 (2014) 331.CrossRefGoogle Scholar
  5. 5.
    Balasubramanian M, Trans Nonferrous Metals Soc China 25 (2015) 2932.CrossRefGoogle Scholar
  6. 6.
    Sartangi P F, and Mousavi S A A A, Mater Sci Forum 580582 (2008) 29.CrossRefGoogle Scholar
  7. 7.
    Kahraman N, Gülenç B, and Findik F, J Mater Process Technol 169 (2005) 127.CrossRefGoogle Scholar
  8. 8.
    Kundu S, and Chatterjee S, Trans Indian Inst Metals 61 (2008) 457.CrossRefGoogle Scholar
  9. 9.
    Elrefaey A, and Tillmann W, J Mater Process Technol 209 (2009) 2746.CrossRefGoogle Scholar
  10. 10.
    Ha J S, and Hong S I, Mater Des 51 (2013) 293.CrossRefGoogle Scholar
  11. 11.
    Ha J S, and Hong S I, Mater Sci Eng A 651 (2016) 805.CrossRefGoogle Scholar
  12. 12.
    Zhao D, Yan J, Liu Y, and Ji Z, Trans Nonferrous Metals Soc China 24 (2014) 2839.CrossRefGoogle Scholar
  13. 13.
    Atasoy E, and Kahraman N, Mater Charact 59 (2008) 1481.CrossRefGoogle Scholar
  14. 14.
    Kundu S, Ghosh M, Laik A, Bhanumurthy K, Kale G B, and Chatterjee S, Mater Sci Eng A 407 (2005) 154.CrossRefGoogle Scholar
  15. 15.
    Liu J G, Cai W C, Liu L, Han J T, and Liu J, Mater Sci Eng A (2017).Google Scholar
  16. 16.
    Luo Z, Wang G, Xie G, Wang L, and Zhao K, Acta Metall Sin (Engl Lett) 26 (2013) 754.CrossRefGoogle Scholar
  17. 17.
    Kundu S, Anand G, and Chatterjee S, Metall Mater Trans A 44 (2012) 2196.CrossRefGoogle Scholar
  18. 18.
    Kundu S, and Thirunavukarasu G, Weld World 60 (2016) 793.CrossRefGoogle Scholar
  19. 19.
    Cherepanov A N, Mali V I, Maliutina I N, Orishich A M, Malikov A G, and Drozdov V O, Int J Adv Manuf Technol 90 (2016) 3037.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Industrial Engineering, Lenjan BranchIslamic Azad UniversityIsfahanIran

Personalised recommendations