Advertisement

Microstructure and Properties of Nb/Nb5Si3 Composites Strengthened with Multiwalled Carbon Nanotubes by SPS

  • Wenyuan LongEmail author
  • Xiaoshu Zeng
  • Hongmei Jia
Technical Paper
  • 13 Downloads

Abstract

Multiwalled carbon nanotubes (MWCNTs) were modified noncovalently with cetyltrimethylammonium bromide. The Nb/Nb5Si3 in situ composite material that was strengthened with MWCNTs was prepared by SPS. The effect of MWCNT content on the microstructure and properties of Nb/Nb5Si3 in situ composites was investigated. The results showed that the composites consisted of Nb, α-Nb5Si3 and β-Nb5Si3 phases. With the addition of over 2 wt% MWCNT, a new Nb4C3 phase was formed in the composites. The properties of the Nb/Nb5Si3 in situ composites were affected by MWCNT addition. The relative density, Vickers hardness and fracture toughness increased with increasing MWCNT addition. When the MWCNT addition was 2 wt%, the relative density and Vickers hardness reached a maximum and increased by ~ 1.4% and ~ 18%, respectively (relative to 0 wt% MWCNT addition). When the MWCNT content exceeded 2 wt%, the relative density and the Vickers hardness decreased. However, the fracture toughness of the Nb/Nb5Si3 composites with 3 wt% MWCNTs reached a maximum (an increase of ~ 68% relative to 0 wt% MWCNT addition). Scanning electron micrographs of the fractography showed brittle cleavage and partial intercrystalline composite fracture. The composite toughening mechanisms arose mainly because of MWCNT removal and bridging.

Keywords

Nb/Nb5Si3 in situ composite Multiwalled carbon nanotube Noncovalently modified Spark plasma sintering (SPS) 

Notes

Acknowledgements

In this paper, the research was sponsored by the National Natural Science Foundation of China (Project No. 51271091) and the Nature Science Foundation of Jiangxi Province (Project No. 20161BAB206107) and the technology project of Jiangxi Province Education Department (Project No. GJJ12420).

References

  1. 1.
    Bewlay B P, Jackson M R, Subramanian P R, and Zhao J C, Metall Mater Trans A 34 (2003) 2043.CrossRefGoogle Scholar
  2. 2.
    Tang Y, and Guo X P, Scr Mater 116 (2016) 16.CrossRefGoogle Scholar
  3. 3.
    Wang F, Luo L, Xu Y, Meng X, Wang L, Han B, Su Y, Guo J, and Fu H, Intermetallics 88 (2017) 6.CrossRefGoogle Scholar
  4. 4.
    Sun Z P, Guo J M, and Zhang C, Rare Metal Mater Eng 45 (2016) 1678.CrossRefGoogle Scholar
  5. 5.
    Li Z, and Tsakiropoulos P, Intermetallics 26 (2012) 18.CrossRefGoogle Scholar
  6. 6.
    Su L, Jia L, Yuan S, Zhou L, Zhang H, and Zhang H, Mater Sci Technol 31 (2014) 220.CrossRefGoogle Scholar
  7. 7.
    Maji P, Mitra R, Ray K K, Intermetallics 85 (2017) 34.CrossRefGoogle Scholar
  8. 8.
    Zhang S, and Guo X, Intermetallics 64 (2015) 51.CrossRefGoogle Scholar
  9. 9.
    Grammenos I, and Tsakiropoulos P, Intermetallics 19 (2011) 1612.CrossRefGoogle Scholar
  10. 10.
    Xiong B W, Cai C C, and Wang Z J, J Alloys Compd 583 (2014) 574.CrossRefGoogle Scholar
  11. 11.
    Guo Y, Jia L, Kong B, Zhang H, and Zhang H, Intermetallics 92 (2018) 1.CrossRefGoogle Scholar
  12. 12.
    Sha J, Hisatoshi H, Tatsuo T, Akira K, Hidetoshi U, and Shuji H, Mater Trans JIM 41 (2000) 1125.CrossRefGoogle Scholar
  13. 13.
    Kim W Y, Yeo I D, Ra T Y, Cho G S, and Kim M S, J Alloys Compd 364 (2004) 186.CrossRefGoogle Scholar
  14. 14.
    Kang Y, Qu S, Song J, Huang Q, and Han Y, Mater Sci Eng A 534 (2012) 323.CrossRefGoogle Scholar
  15. 15.
    Zhang S, and Guo X, Intermetallics 57 (2015) 83.CrossRefGoogle Scholar
  16. 16.
    Thandorn T, and Tsakiropoulos P, Intermetallics 18 (2010) 1033.CrossRefGoogle Scholar
  17. 17.
    Li Z F, and Tsakiropoulos P, Intermetallics 18 (2010) 1072.CrossRefGoogle Scholar
  18. 18.
    Tiwary C S, Kashyap S, and Chattopadhyay K, Mater Sci Eng A 560 (2013) 200.CrossRefGoogle Scholar
  19. 19.
    Vellios N, and Tsakiropoulos P, Intermetallics 18 (2010) 1729.CrossRefGoogle Scholar
  20. 20.
    Geng J, Tsakiropoulos P, Shao G, Intermetallics 15 (2007) 69.CrossRefGoogle Scholar
  21. 21.
    Kim W Y, Tanaka H, Kasama A, and Hanada S, Intermetallics 9 (2001) 827CrossRefGoogle Scholar
  22. 22.
    Kim W Y, Tanaka H, and Hanada S, Intermetallics 10 (2002) 625.CrossRefGoogle Scholar
  23. 23.
    Sha J, Hirai H, Ueno H, Tabaru T, Kitahara A, and Hanada S, Metal Mater Trans A 34 (2003) 2861CrossRefGoogle Scholar
  24. 24.
    Esparza N, Rangel V, Gutierrez A, Arellano B, and Varma S K, Mater High Temp 33 (2016) 105.CrossRefGoogle Scholar
  25. 25.
    Jia L N, Weng J F, Li Z, Hong Z, Su L F, and Zhang H, Mater Sci Eng A 623 (2015) 32.CrossRefGoogle Scholar
  26. 26.
    Li Z, and Tsakiropoulos P, J Alloys Compd 550 (2013) 553.CrossRefGoogle Scholar
  27. 27.
    Kashyap S, Tiwary C S, and Chattopadhyay K, Intermetallics 19 (2011) 1943.CrossRefGoogle Scholar
  28. 28.
    Knittel S, Mathieu S, and Vilasi M, Intermetallics 47 (2014) 36.CrossRefGoogle Scholar
  29. 29.
    Sun Z P, Guo X P, Tian X D, and Zhou L, Intermetallics 54 (2014) 143.CrossRefGoogle Scholar
  30. 30.
    Jagannatham M, Sankaran S, and Haridoss P, Mater Sci Eng A 638 (2015) 197.CrossRefGoogle Scholar
  31. 31.
    Feng X, Sui J H, Cai W, and Liu A L, Scr Mater 64 (2011) 824.CrossRefGoogle Scholar
  32. 32.
    Feng X, Sui J H, and Cai W, J Compos Mater 45 (2011) 1553.CrossRefGoogle Scholar
  33. 33.
    Lee J, Hwang J, Lee D, Ryu H J, and Hong S H, J Alloys Compd 617 (2014) 505.CrossRefGoogle Scholar
  34. 34.
    Kondoh K, Threrujirapapong T, Imai H, Umeda J, and Fugetsu B, Compos Sci Technol 69 (2009) 1077,CrossRefGoogle Scholar
  35. 35.
    Ye D L, and Hu J H, Handbook of Inorganic Thermodynamics, Metallurgical Industry Press, Beijing (2002).Google Scholar
  36. 36.
    Sekido N, Wei F G, Kimura Y, Miura S, and Mishima Y, Philos Mag Lett 86 (2006) 89.CrossRefGoogle Scholar
  37. 37.
    Khor K A, Cheng K H, Yu L G, and Boey F, Mater Sci Eng A 347 (2003) 300.CrossRefGoogle Scholar
  38. 38.
    Chen Z, and Yan Y W, J Wuhan Univ Technol (Mater Sci Ed) 22 (2007) 299.CrossRefGoogle Scholar
  39. 39.
    Wang X L, Wang G F, and Zhang K F, Mater Sci Eng A 527 (2010) 3253.CrossRefGoogle Scholar
  40. 40.
    Ameri S, Sadeghian Z, and Kazeminezhad I, Intermetallics 76 (2016) 41.CrossRefGoogle Scholar
  41. 41.
    Ma C L, Li J G, Tan Y, Tanaka R, and Hanada S, Mater Sci Eng A 384 (2004) 377.CrossRefGoogle Scholar
  42. 42.
    Bakshi S R, Lahiri D, and Agarwal A, Int Mater Rev 55 (2010) 41.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Nanchang Hangkong UniversityNanchangChina
  2. 2.Gongqing Institute of Science and TechnologyNanchangChina

Personalised recommendations