Advertisement

Modeling and Characterization of Porous Tantalum Scaffolds

  • Vignesh Raja Sukumar
  • Brahma Raju GollaEmail author
  • Mahammad Ali Shaik
  • Ankit Yadav
  • Sarath Chandra Dongari Taraka
  • Shivkumar Khaple
Technical Paper
  • 21 Downloads

Abstract

In this work, porous tantalum scaffolds (having porosity up to ~ 71%) were prepared via space holder technique at a lower sintering temperature of 1300 °C. Depending on the amount of porosity, the elastic modulus, yield and compressive strength of porous tantalum scaffolds were found to vary in the range of 1–7 GPa, 4–11 MPa and 22–30 MPa, respectively. Finite element simulation results revealed that tantalum scaffolds with 30% porosity were best suited for hip joint replacement applications as the developed von Misses stresses and displacement of implants under given loading conditions were within safe limits for these scaffolds. The electrochemical behavior of scaffolds was evaluated using the electrochemical workstation in simulated body fluid solution, and the corrosion rate of tantalum scaffolds was found to increase from 5.011 to 8.718 mils per year with increasing porosity. These studies reveal that the tantalum scaffolds are very effective for bioapplications.

Keywords

Porous tantalum Scaffold Sintering Mechanical properties Modeling Corrosion 

Notes

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Bobyn J D, Stackpool G J, Hacking S A, Tanzer M, and Krygier J J, J. Bone Joint Surg. 81B (1999) 907.Google Scholar
  2. 2.
    Hernández R, Polizu S, Turenne S, and Yahia L H, Bio-Med. Mater. Eng. 12 (2002) 37.Google Scholar
  3. 3.
    Ayers R A, Bateman T A, and Simske S J, Ed., Springer-Verlag, New York (2000) 73.Google Scholar
  4. 4.
    Bansiddhi A, Sargeant T D, Stupp S I, and Dunand D C, 4 (2008) 773.Google Scholar
  5. 5.
    Havard J H, Marta M, Marina R, Anders V, Stale P L, Jan E E, Hans J R, and Johan C W, Acta Biomaterialia 9 (2013) 5390.CrossRefGoogle Scholar
  6. 6.
    Klompmaker J, Jansen H W B, Veth R P H, Nielsen H K L, de Groot J H, and Pennings A J, Biomaterials 13 (1992) 625.CrossRefGoogle Scholar
  7. 7.
    Fabrizio M, Alessandra B, Luigi S, Christian C, and Massimo I, Clinical Cases in Mineral and Bone Metabolism 10 (2013) 111.Google Scholar
  8. 8.
    Ruperez E, Manero J M, Riccardi K, Yuping, Aparicio C, and Gil F J, Materials & Design 83 (2015) 112.Google Scholar
  9. 9.
    Christos G P, George A T, Stephanos D K, and Macheras G A, Indian J Orthop 46 (2012) 505.CrossRefGoogle Scholar
  10. 10.
    Balla V K, Bodhak S, Bose S, Bandyopadhyay A, Acta Biomaterialia 6 (2010) 3349.CrossRefGoogle Scholar
  11. 11.
    Levine B R, Adv. Eng Mater. 10 (2008) 788.CrossRefGoogle Scholar
  12. 12.
    Patil N, Lee K, and Goodman S B, J Biomed Mater Res B Applied Biomater 89 (2009) 242.CrossRefGoogle Scholar
  13. 13.
    Matsuno H, Yokoyama A, Watari F, Uo M, and Kawasaki T, Biomaterials 22 (2001) 1253.CrossRefGoogle Scholar
  14. 14.
    Oh I-H, Nomura N, Masahashi N, and Hanada S, Scr Mater. 49 (2003) 1197.CrossRefGoogle Scholar
  15. 15.
    Levine B R, Sporer S, Poggie R A, Della Valle C J, and Jacobs J J, Biomaterials 27 (2006) 4671.CrossRefGoogle Scholar
  16. 16.
    Lee B, Lee T, Lee Y, Lee D J, Jeong J, Yuh J, Oh S H, Kim H S, and Lee C S, Materials and Design 57 (2014) 712.CrossRefGoogle Scholar
  17. 17.
    Arifvianto B, and Zhou J, Materials 7 (2014) 3588.CrossRefGoogle Scholar
  18. 18.
    Tuncer N, Arslan G, Maire E, and Salvo L, Mater. Sci. Eng. A 530 (2011) 633.CrossRefGoogle Scholar
  19. 19.
    Alvarez K, and Nakajima H, Materials 2 (2009) 790.CrossRefGoogle Scholar
  20. 20.
    Tanuma Y, Anada T, Honda Y, Kawai T, Kamakura S, Echigo S, and Suzuki O, Tissue Engineering: Part A 18 (2012) 546.CrossRefGoogle Scholar
  21. 21.
    Vissers C A B, Harvestine J N, and Leach J K, J. Mater. Chem. B 3 (2015) 8650.CrossRefGoogle Scholar
  22. 22.
    Ochiai S, Nakano S, Fukazawa Y, Aly M S, Okuda H, Kato K, Isobe T, Kita K, and Honma K, Mater. Trans. 51 (2010) 925.CrossRefGoogle Scholar
  23. 23.
    Zhou Y, and Zhu Y, Materials Letters 99 (2013) 8.CrossRefGoogle Scholar
  24. 24.
    Zardiackas L D, Parsell D E, Dillon L D, Mitchell D W, Nunnery L A, and Poggie R, J Biomed Mater Res (Appl. Biomater) 58 (2001) 180.Google Scholar
  25. 25.
    Wauthle R, van der Stok J, Yavari S A, Van Humbeeck J, Kruth J-P, Zadpoor A A, Weinans H, Mulier M, and Schrooten J, Acta, Biomaterialia 14 (2015) 217.Google Scholar
  26. 26.
    Adamek G, and Jakubowicz J, Int. Journal of Refractory Metals and Hard Materials 53 (2015) 51.Google Scholar
  27. 27.
    Cheng J, Xu J, Liu L L, and Jiang S, Materials 9 (2016) 772.CrossRefGoogle Scholar
  28. 28.
    Munoz A I, and Mischler S, J. Electrochem. Soc. 154 (2007) 562.CrossRefGoogle Scholar
  29. 29.
    Karageorgiou V, and Kaplan D, Biomaterials 26 (2005) 5474.CrossRefGoogle Scholar
  30. 30.
    Sabatini A L, and Goswami T, Materials and Design 29 (2008) 1438.CrossRefGoogle Scholar
  31. 31.
    Asgaria S A, Hamoudaa A M S, Mansora S B, Singhc H, Mahdia E, Wirzaa R, and Prakashc B, Finite Elements in Analysis and Design 40 (2004) 2027.CrossRefGoogle Scholar
  32. 32.
    Pyburn E, and Goswami T, Materials and Design 25 (2004) 705.CrossRefGoogle Scholar
  33. 33.
    Malfroy Camine V, Rudiger H, Pioletti D P, and Terrier A, J Biomech. 49 (2016) 4002.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Metallurgical and Materials Engineering DepartmentNational Institute of TechnologyWarangalIndia
  2. 2.Mechanical Engineering DepartmentNational Institute of TechnologyWarangalIndia
  3. 3.Defence Metallurgical Research LaboratoryKanchanbagh, HyderabadIndia

Personalised recommendations