Advertisement

Investigations on the Multifunctionality of Bismuth Iron Oxide

  • M. Dewan
  • S. B. MajumderEmail author
Technical Paper
  • 31 Downloads

Abstract

Amongst various types of multiferroic compounds, bismuth ferrite (BiFeO3; BFO) stands out as it exhibits both magnetic and ferroelectric polarization orderings at room temperature. Till date, studies on BFO-based materials have mainly been focused on dielectric, ferroelectric, magnetic and on magnetoelectric coupling. The aim of the present work is to explore additional functionality of BFO ceramics. We have synthesized BFO ceramics using auto-combustion route and demonstrated its functionality as the anode of lithium ion recharging material, toxic gas-sensing material and photo-catalyst. As Li ion cell anode, we have shown that BFO, in half-cell configuration, yields a reversible capacity ~ 120 mAh/g with excellent cycleability. BFO has been demonstrated to be excellent sensing material for volatile organic compounds. Under solar illumination, BFO yields 99.5% degradation of coloured aromatic dye within 50 min. Our investigations pave the way to explore these new functionalities of BFO ceramics.

Keywords

Multiferroic materials Magnetization Li ion battery Photo-catalyst VOC gas sensor 

Notes

Acknowledgements

The research work was partially supported by the research grant obtained from CSIR, Government of India, vide sanction letter No. 03/(1371)/16/EMR-II, dated May 10, 2016 and DST, Government of India, vide sanction letter Nos. 5(1)/2017-NANO dated March 28, 2018 and DST/NM/NNETRA/2018(G)-IIT KGP dated March 21, 2018.

References

  1. 1.
    Catalan G, and Scott J F, Adv Mater 21 (2009) 2463.CrossRefGoogle Scholar
  2. 2.
    Fiebig M, J Phys D Appl Phys 38 (2005) 123.CrossRefGoogle Scholar
  3. 3.
    Ederer C, and Spaldin N A, Phys Rev B 71 (2005) 060401.CrossRefGoogle Scholar
  4. 4.
    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, and Ramesh R, Science 299 (2003) 1719.CrossRefGoogle Scholar
  5. 5.
    Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, and Tokura Y, Phys Rev B 67 (2003) 180401.CrossRefGoogle Scholar
  6. 6.
    Rossell M D, Erni R, Prange M P, Idrobo J C, Luo W, Zeches R J, Pantelides S T, and Ramesh R, Phys Rev Lett 108 (2012) 047601.CrossRefGoogle Scholar
  7. 7.
    Choi T, Lee S, Choi Y J, Kiryukhin V, and Cheong S W, Science 324 (2009) 63.CrossRefGoogle Scholar
  8. 8.
    Yang S Y, Seidel J, Byrnes S J, Shafer P,Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W, and Ramesh R, Nat Nanotechnol 5 (2010) 143.CrossRefGoogle Scholar
  9. 9.
    Wu J, Fan Z, Xiao D, Zhu J, and Wang J, Prog Mater Sci 84 (2016) 335.CrossRefGoogle Scholar
  10. 10.
    Costa L V, Rocha L S, Cortés J A, Ramirez M A, Longo E, and Simões A Z, Ceram Int 41 (2015) 9265.CrossRefGoogle Scholar
  11. 11.
    Kubel F, and Schmid H, Acta Crystallogr B 46 (1990) 698.CrossRefGoogle Scholar
  12. 12.
    Rojac T, Bencan A, Drazic G, Sakamoto N, Ursic H, Jancar B, Tavcar G, Makarovic M, Walker J, Malic B, and Damjanovic D, Nat Mater 16 (2017) 322.Google Scholar
  13. 13.
    Perejon A, Maso N, West A R, Sanchez-Jimenez P E, Poyato R, Criado J M, and Perez-Maqueda L A, J Am Ceram Soc 96 (2013) 1220.CrossRefGoogle Scholar
  14. 14.
    Yang S Y, Martin L W, Byrnes S J, Conry T E, Basu S R, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu Y H, Yang C H, Musfeldt J L, Schlom D G, Ager J W, and Ramesh R, Appl Phys Lett 95 (2009) 062909.CrossRefGoogle Scholar
  15. 15.
    Campos L M, Tontcheva A, Gunes S, Sonmez G, Neugebauer H, Sariciftci N S, and Wudl F, Chem Mater 17 (2005) 4031.Google Scholar
  16. 16.
    Bhatnagar A, Chaudhuri A R, Kim Y H, Hesse D, and Alexe M, Nat Commun 4 (2013) 3835.CrossRefGoogle Scholar
  17. 17.
    Fridkin V M, Springer Series in Solid-State Sciences, 9 Springer, New York (1979).Google Scholar
  18. 18.
    Bai Z, Geng W, Zhang Y, Xu S, Guo H, and Jiang A, Appl Phys A 123 (2017) 561.CrossRefGoogle Scholar
  19. 19.
    Gao R, Fu C, Cai W, Chen G, Deng X, and Cao X, J Electron Mater 46 (2017) 2373.CrossRefGoogle Scholar
  20. 20.
    Azmy H A M, Razuki N A, Aziz A W, Satar N S A, and Kaus N H M, J Phys Sci 28 (2017) 85.CrossRefGoogle Scholar
  21. 21.
    Zhang N, Chen D, Niu F, Wang S, Qin L, and Huang Y, Sci Rep 6 (2016) 26467.CrossRefGoogle Scholar
  22. 22.
    Yang M, Bhatnagar A, and Alexe M, Adv Electron Mater 1 (2015) 1500139.CrossRefGoogle Scholar
  23. 23.
    Jadhav VV, Zate MK, Liu S, Naushad M, Mane RS, Hui KN, Han SH, Appl Nanosci 6 (2016) 511CrossRefGoogle Scholar
  24. 24.
    Xia H, Yan F, Lai M O, and Lu L, Funct Mater Lett 2 (2009) 163.CrossRefGoogle Scholar
  25. 25.
    Durai L, Moorthy B, Thomas C I, Kim D K, and Bharathi K K, Mater Sci Semicond Process 68 (2017) 165.CrossRefGoogle Scholar
  26. 26.
    Dong G, Fan H, Tian H, Fang J, and Li Q, RSC Adv 5 (2015) 29618.CrossRefGoogle Scholar
  27. 27.
    Dziubaniuk M, Koronska R B, Suchanicz J, Wyrwa J, and Rekas M, Sens Actuators B 188 (2013) 957.CrossRefGoogle Scholar
  28. 28.
    Chakraborty S, and Pal M, New J Chem 42 (2018) 7188.CrossRefGoogle Scholar
  29. 29.
    Ghosh A, Maity A, Banerjee R, and Majumder S B, J Alloys Compd 692 (2017) 108.CrossRefGoogle Scholar
  30. 30.
    Hunpratub S, Thongbai P, Yamwong T, Yimnirun R, and Maensiri S, Appl Phys Lett 94 (2009) 062904.CrossRefGoogle Scholar
  31. 31.
    Kamba S, Nuzhnyy D, Savinov M, Sebek J, Petzelt J, Prokleska J, Haumont R, and Kreisel J, Phys Rev B 75 (2007) 024403.CrossRefGoogle Scholar
  32. 32.
    Markiewicz E, Hilczer B, Blaszyk M, Pietraszko A, and Talik E, J. Electroceram 27 (2011) 154.CrossRefGoogle Scholar
  33. 33.
    Ma Y, Chen X M, and Lin Y Q, J Appl Phys 103 (2008) 124111.CrossRefGoogle Scholar
  34. 34.
    Ang C, Yu Z, and Cross L E, Phys Rev B 62 (2000) 228.CrossRefGoogle Scholar
  35. 35.
    Waser R, Baiatu T, and Hrdtl K H, J Am Ceram Soc 73 (1990) 1645.CrossRefGoogle Scholar
  36. 36.
    Das R, Sharma S, and Mandal K, J Magn Magn Mater 401 (2016) 129.CrossRefGoogle Scholar
  37. 37.
    Sinclair D C, and West A R, J Appl Phys 66 (1989) 3850.CrossRefGoogle Scholar
  38. 38.
    Maso N, and West A R, Chem Mater 24 (2012) 2127.CrossRefGoogle Scholar
  39. 39.
    Cheng Z X, Li A H, Wang X L, Dou S X, Ozawa K, Kimura H, Zhang S J, and Shrout T R, J Appl Phys 103 (2008) 07E507.CrossRefGoogle Scholar
  40. 40.
    Verma V, Beniwal A, Ohlan A, and Tripathi R, J Magn Magn Mater 394 (2015) 385.CrossRefGoogle Scholar
  41. 41.
    Sarkar M, Balakumar S, Saravanan P, and Bharathkumar S, Nanoscale 7 (2015) 10667.CrossRefGoogle Scholar
  42. 42.
    Fengzhen H, Zhijun W, Xiaomei L, Junting Z, Kangli M, Weiwei L, Ruixia T, TingTing X, Ju H, Chen Y, and Jinsong Z, Sci Rep 3 (2013) 2907.CrossRefGoogle Scholar
  43. 43.
    Yang Y C, Liu Y, Wei J H, Pan C X, Xiong R, and Shi J, RSC Adv 4 (2014) 31941.CrossRefGoogle Scholar
  44. 44.
    Halasi G, Schubert G, and Solymosi F, J Catal 294 (2012) 199.CrossRefGoogle Scholar
  45. 45.
    Kiriakidou F, Kondarides D I, and Verykios X E, Catal Today 54 (1999) 119.CrossRefGoogle Scholar
  46. 46.
    Fridkin V M, Photoferroelectrics, Springer (1979).Google Scholar
  47. 47.
    Feng Y-N, Wang H-C, Luo Y-D, Shen Y, and Lin Y-H, J Appl Phys 113 (2013) 146101.CrossRefGoogle Scholar
  48. 48.
    Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, and Davies P K, Nature 503 (2013) 509.CrossRefGoogle Scholar
  49. 49.
    Soltani T, and Entezari M H, Ultraso Sonochem 20 (2013) 1245.CrossRefGoogle Scholar
  50. 50.
    Soltani T, and Entezari M H, Chem Eng J 223 (2013) 145.CrossRefGoogle Scholar
  51. 51.
    Sharma N, Shaju K M, Rao G V S, and Chowdari B V R, Electrochem Commun 4 (2002) 947.CrossRefGoogle Scholar
  52. 52.
    Zhang D W, Xie S, and Chen C H, J Electroceram 15 (2005) 109.CrossRefGoogle Scholar
  53. 53.
    Hu Y S, Guo Y G, Sigle W, Hore S, Balaya P, and Maier J, Nat Mater 5 (2006) 713.CrossRefGoogle Scholar
  54. 54.
    Zhang Y, Xu H, Dong S, Han R, Liu X, Wang Y, Li S, Bu Q, Li X, and Xiang J, J Mater Sci Mater Electron 29 (2018) 2193.Google Scholar
  55. 55.
    Zhu H, Zhang P, and Dai S, ACS Catal 5 (2015) 6370.CrossRefGoogle Scholar
  56. 56.
    Tasaki T, Takase S, and Shimizu Y, J Sens Technol 2 (2012) 75.CrossRefGoogle Scholar
  57. 57.
    Addabbo T, Bertocci F, Fort A, Gregorkiewitz M, Mugnaini M, Spinicci R, and Vignoli V, Sens Actuators B 221 (2015) 1137.CrossRefGoogle Scholar
  58. 58.
    Tong T, Chen J, Jin D, and Cheng J, Mater Lett 197 (2017) 160.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Materials Science CentreIndian Institute of Technology, KharagpurKharagpurIndia

Personalised recommendations