Investigation of Mechanical Properties and Dry Sliding Wear Behaviour of Squeeze Cast LM6 Aluminium Alloy Reinforced with Copper Coated Short Steel Fibers

  • Samson Jerold Samuel Chelladurai
  • Ramesh Arthanari
  • Nisaanthakumar Nithyanandam
  • Karthikeyan Rajendran
  • Kesavaprasad Kothandapani Radhakrishnan
Technical Paper

Abstract

LM6 aluminium alloy with 2.5–10 wt% of copper coated short steel fiber reinforced composites were prepared using squeeze casting process. Microstructure and mechanical properties viz., hardness, tensile strength and ductility were investigated. Dry sliding wear behaviour was tested by considering sliding distance and load. Fracture surface and worn surface were examined using field emission scanning electron microscope (FESEM). Hardness of composites increased with increasing wt% of fiber. Tensile strength of composites increased up to 19% for 5 wt% fiber composites. Further addition of fibers decreased the tensile strength of composites. Ductility of the composites decreased with the addition of fibers into the matrix. Wt% of fibers significantly decreased the weight loss, coefficient of friction and wear rate. Also the cumulative weight loss decreased up to 57% for 10 wt% of composites compared to LM6 aluminium alloy. Fracture surface of composite tensile specimen showed dimple formation and fiber pullout. Worn surface of matrix showed long continuous grooves due to local delamination on the surface. However, worn surface of composites showed fine and smooth grooves due to ploughing rather than local delamination. Copper coated steel fiber reinforcement in LM6 aluminium alloy exhibited better mechanical properties and wear resistance compared to matrix.

Keywords

LM6 aluminium alloy Steel fiber Squeeze casting Microstructure Tensile strength Wear resistance 

References

  1. 1.
    Chou T W, Kelly A, and Okura A, Composites 16 (1985) 187.  https://doi.org/10.1016/0010-4361(85)90603-2.CrossRefGoogle Scholar
  2. 2.
    Dwivedi S P, Sharma S, and Mishra R K, J Braz Soc Mech Sci Eng 37 (2014) 57.  https://doi.org/10.1007/s40430-014-0138-y.CrossRefGoogle Scholar
  3. 3.
    Hosking F M, Portillo F F, Wunderlin R, and Mehrabian R, J Mater Sci 17 (1982) 477.  https://doi.org/10.1007/bf00591483.CrossRefGoogle Scholar
  4. 4.
    Mandal D, Dutta B K, and Panigrahi S C, J Mater Sci 41 (2006) 4764.  https://doi.org/10.1007/s10853-006-0036-5.CrossRefGoogle Scholar
  5. 5.
    Manna A, Mahapatra P B, and Bains H S, J Compos Mater 44 (2010) 3069.  https://doi.org/10.1177/0021998310366362.CrossRefGoogle Scholar
  6. 6.
    Miller W, Zhuang L, Bottema J, Wittebrood A, De Smet P, Haszler A, and Vieregge A, Mater Sci Eng A 280 (2000) 37.  https://doi.org/10.1016/s0921-5093(99)00653-x.CrossRefGoogle Scholar
  7. 7.
    Surappa M K, and Rohatgi P K, J Mater Sci 16 (1981) 983.  https://doi.org/10.1007/bf00542743.CrossRefGoogle Scholar
  8. 8.
    Zhu X, Zhao Y, Wang H, Wang Z G, Wu M, Pei C H, Chen C, and Jiang Q C, J Mater Eng Perform (2016).  https://doi.org/10.1007/s11665-016-2308-9.Google Scholar
  9. 9.
    Asano K, Mater Manuf Process 30 (2015) 1312.  https://doi.org/10.1080/10426914.2015.1019101.CrossRefGoogle Scholar
  10. 10.
    Bhagat R B, Amateau M F, Conway J C, Paulick J M, Chisholm J M, Parnell J M, and Seidensticker D G, J Compos Mater 23 (1989) 961.  https://doi.org/10.1177/002199838902300906.CrossRefGoogle Scholar
  11. 11.
    Ghomashchi M R, and Vikhrov A, J Mater Process Technol 101 (2000) 1.  https://doi.org/10.1016/s0924-0136(99)00291-5.CrossRefGoogle Scholar
  12. 12.
    Gurusamy P, Prabu S B, and Paskaramoorthy R, Mater Manuf Process 30 (2015) 367.  https://doi.org/10.1080/10426914.2014.973587.CrossRefGoogle Scholar
  13. 13.
    Lu Y, Li J, Yang J, and Li X, Mater Manuf Process 31 (2016) 1306.  https://doi.org/10.1080/10426914.2015.1070417.CrossRefGoogle Scholar
  14. 14.
    Rajagopal S, Leader G, and Tech- M, J Appl Metalwork 1 (1981) 3.CrossRefGoogle Scholar
  15. 15.
    Soundararajan R, Ramesh A, Mohanraj N, and Parthasarathi N, J Alloys Compd 685 (2016) 533.  https://doi.org/10.1016/j.jallcom.2016.05.292.CrossRefGoogle Scholar
  16. 16.
    Vijayaram T R, Sulaiman S, Hamouda A M S, and Ahmad M H M, J Mater Process Technol 178 (2006) 34.  https://doi.org/10.1016/j.jmatprotec.2005.09.026.CrossRefGoogle Scholar
  17. 17.
    Vijian P, and Arunachalam V P, Int J Adv Manuf Technol 33 (2006) 1122.  https://doi.org/10.1007/s00170-006-0550-2.CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Baron R, Wert J, Gerard D, and Wawner F, J Mater Sci 32 (1997) 6435.CrossRefGoogle Scholar
  20. 20.
    Suzuki T, Umehara H, Hayashi R, and Watanabc S, J Mater Res 8 (1993) 2492.  https://doi.org/10.1557/JMR.1993.2492 CrossRefGoogle Scholar
  21. 21.
    Wang Y Q, and Zhou B L, Compos Part A Appl Sci Manuf 27 (1996) 1139.  https://doi.org/10.1016/1359-835x(96)00072-3.CrossRefGoogle Scholar
  22. 22.
    Mandal D, Dutta B K, and Panigrahi S C, Mater Sci Eng A 492 (2008) 346.  https://doi.org/10.1016/j.msea.2008.03.031.CrossRefGoogle Scholar
  23. 23.
    Deuis R L, Subramanian C, and Yellupb J M, Compos Sci Technol 57 (1997) 415.  https://doi.org/10.1016/s0266-3538(96)00167-4.CrossRefGoogle Scholar
  24. 24.
    Alpas A T, and Zhang J, Wear 155 (1992) 83.  https://doi.org/10.1016/0043-1648(92)90111-k.CrossRefGoogle Scholar
  25. 25.
    Iwai Y, Honda T, Miyajima T, Iwasaki Y, Surappa M K, and Xu J F, Compos Sci Technol 60 (2000) 1781.  https://doi.org/10.1016/s0266-3538(00)00068-3.CrossRefGoogle Scholar
  26. 26.
    Kumar B A, Murugan N, and Dinaharan I, Trans Nonferr Met Soc China 24 (2014) 2785.  https://doi.org/10.1016/s1003-6326(14)63410-5.CrossRefGoogle Scholar
  27. 27.
    Monikandan V V, Joseph M A, and Rajendrakumar P K, J Mater Eng Perform (2016).  https://doi.org/10.1007/s11665-016-2276-0.Google Scholar
  28. 28.
    Poovazhagan L, Kalaichelvan K, and Sornakumar T, Mater Manuf Process 6914 (2015) 1.  https://doi.org/10.1080/10426914.2015.1026354.Google Scholar
  29. 29.
    Radhika N, and Raghu R, Tribol Lett 59 (2015) 2.  https://doi.org/10.1007/s11249-015-0516-3.CrossRefGoogle Scholar
  30. 30.
    Sathiskumar R, Dinaharan I, Murugan N, and Vijay S J, Trans Nonferr Met Soc China (English Ed) 25 (2015) 95.  https://doi.org/10.1016/s1003-6326(15)63583-x.
  31. 31.
    Soorya Prakash K, Kanagaraj A, and Gopal P M, Trans Nonferr Met Soc China (English Ed) 25 (2015) 893.  https://doi.org/10.1016/s1003-6326(15)64036-5.
  32. 32.
    Suresh K R, Niranjan H B, Jebaraj P M, and Chowdiah M P, Wear 255 (2003) 638.  https://doi.org/10.1016/s0043-1648(03)00292-8.CrossRefGoogle Scholar
  33. 33.
    Yuvaraj N, and Aravindan S, Integr Med Res (2015) 1.  https://doi.org/10.1016/j.jmrt.2015.02.006.
  34. 34.
    Mandal D, Dutta B K, and Panigrahi S C, J Mater Sci, 42 (2007) 2417.  https://doi.org/10.1007/s10853-006-1271-5.CrossRefGoogle Scholar
  35. 35.
    Akbulut H, Durman M, and Yilmaz F, Wear 215 (1998) 170.  https://doi.org/10.1016/s0043-1648(97)00237-8.CrossRefGoogle Scholar
  36. 36.
    Mandal D, Dutta B K, and Panigrahi S C, J Mater Process Technol 198 (2008) 195.  https://doi.org/10.1016/j.jmatprotec.2007.06.074.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Samson Jerold Samuel Chelladurai
    • 1
  • Ramesh Arthanari
    • 2
  • Nisaanthakumar Nithyanandam
    • 1
  • Karthikeyan Rajendran
    • 1
  • Kesavaprasad Kothandapani Radhakrishnan
    • 1
  1. 1.Department of Mechanical EngineeringSri Krishna College of Engineering and TechnologyCoimbatoreIndia
  2. 2.Department of Mechanical EngineeringSri Krishna College of TechnologyCoimbatoreIndia

Personalised recommendations