Effect of Copper Coating and Reinforcement Orientation on Mechanical Properties of LM6 Aluminium Alloy Composites Reinforced with Steel Mesh by Squeeze Casting

  • Samson Jerold Samuel Chelladurai
  • Ramesh Arthanari
  • Kirubaharan Krishnamoorthy
  • Kamal Shankar Selvaraj
  • Prabu Govindan
Technical Paper

Abstract

Uncoated and copper coated steel wire mesh reinforcing LM6 aluminium alloy composites have been produced using squeeze casting process by varying reinforcement orientation viz., 0°, 45° and 90° respectively. Microstructure of the castings has been examined and mechanical properties such as hardness, tensile strength and ductility have been investigated. Fracture surface of tensile specimens has been analysed using field emission scanning electron microscope. Microstructure of samples reveals that copper coating on steel wires improves the interface bonding between matrix and reinforcement. Average hardness values of 259 and 90 Hv have been observed in steel wire and matrix respectively. Tensile strength of composites increases with increasing angle of reinforcement orientation from 0° to 90°. Tensile strength increases up to 11% by reinforcing copper coated steel wire mesh at 90° orientation as compared to LM6 aluminium alloy. Fracture surface of composites shows pullout of steel wires in uncoated steel wire mesh composites and broken wires in copper coated steel wire mesh composites respectively. Dimples have been observed on the fracture surface of LM6 aluminium alloy. In general, copper coated steel wire mesh composites offer better hardness and tensile strength compared to uncoated steel wire mesh composites and LM6 aluminium alloy. This may be attributed to the copper coating on steel wires which results better interface bonding between matrix and reinforcement.

Keywords

LM6 aluminium alloy Steel mesh Microstructure Hardness Tensile strength Ductility 

References

  1. 1.
    Seshan S, Guruprasad A, Prabha M, and Sudhakar A, J Indian Inst Sci 76 (1996) 1.Google Scholar
  2. 2.
    Quigley BF, Abbaschian GJ, Wunderlin R, and Mehrabian R, Metall Trans A 13 (1982) 93.Google Scholar
  3. 3.
    Ahmad Z, J Reinf Plast Compos 20 (2001) 921.  https://doi.org/10.1177/073168401772678896.CrossRefGoogle Scholar
  4. 4.
    Vijian P, and Arunachalam V P, J Mater Process Technol 180 (2006) 161.  https://doi.org/10.1016/j.jmatprotec.2006.05.016.
  5. 5.
    Sulaiman S, Sayuti M, and Samin R, J Mater Process Technol 1 (2007) 731.  https://doi.org/10.1016/j.jmatprotec.2007.11.221.
  6. 6.
    Ficici F, and Koksal S, J Compos Mater (2016)  https://doi.org/10.1177/0021998315595709.
  7. 7.
    Monikandan V V, Joseph M A, and Rajendrakumar P K, J Mater Eng Perform (2016).  https://doi.org/10.1007/s11665-016-2276-0.Google Scholar
  8. 8.
    Prakash K S, Kanagaraj A, and Gopal P M, Trans Nonferrous Met Soc China 25 (2015) 3893.  https://doi.org/10.1016/S1003-6326(15)64036-5.
  9. 9.
    Suzuki T, Umehara H, and Hayashi R, J Mater Res 8 (1993) 2.Google Scholar
  10. 10.
    Suresh K R, Niranjan H B, Jebaraj P M, and Chowdiah M P, Wear 255 (2003) 638.  https://doi.org/10.1016/S0043-1648(03)00292-8.Google Scholar
  11. 11.
    Yuvaraj N, and Aravindan S, Integr Med Res 4 (2015) 1.  https://doi.org/10.1016/j.jmrt.2015.02.006.Google Scholar
  12. 12.
    Akbulut H, Durman M, and Yilmaz F, Wear 215 (1998) 170.  https://doi.org/10.1016/S0043-1648(97)00237-8.CrossRefGoogle Scholar
  13. 13.
    Modi O P, Prasad B K, Yegneswaran A H, and Vaidya M L, Mater Sci Eng A 151 (1992) 235.  https://doi.org/10.1016/0921-5093(92)90212-J.CrossRefGoogle Scholar
  14. 14.
    Song J I, and Han K S, Compos Struct 39 (1997) 309.  https://doi.org/10.1016/s0263-8223(97)00124-4.CrossRefGoogle Scholar
  15. 15.
    Mandal D, Dutta B K, and Panigrahi S C, Mater Sci Eng A 492 (2008) 346.  https://doi.org/10.1016/j.msea.2008.03.031.CrossRefGoogle Scholar
  16. 16.
    Mandal D, Dutta B K, Panigrahi S C, J Mater Sci 41 (2006) 4764.  https://doi.org/10.1007/s10853-006-0036-5.CrossRefGoogle Scholar
  17. 17.
    Vijian P, and Arunachalam V P, J Mater Process Technol 186 (2007) 82.  https://doi.org/10.1016/j.jmatprotec.2006.12.019.
  18. 18.
    Senthil P, and Amirthagadeswaran K S, J Mech Sci Technol 26 (2012) 1141.  https://doi.org/10.1007/s12206-012-0215-z.CrossRefGoogle Scholar
  19. 19.
    Girot F A, J Reinf Plast Compos 9 (1990) 456.  https://doi.org/10.1177/073168449000900503.CrossRefGoogle Scholar
  20. 20.
    Soundararajan R, Ramesh A, Mohanraj N, and Parthasarathi N, J Alloys Compd 685 (2016) 533.  https://doi.org/10.1016/j.jallcom.2016.05.292.CrossRefGoogle Scholar
  21. 21.
    Vijian P, and Arunachalam V P, Int J Adv Manuf Technol 33 (2006) 1122.  https://doi.org/10.1007/s00170-006-0550-2.CrossRefGoogle Scholar
  22. 22.
    Ghomashchi M R, Vikhrov A, J Mater Process Technol 101 (2000) 1.  https://doi.org/10.1016/S0924-0136(99)00291-5.CrossRefGoogle Scholar
  23. 23.
    Rajagopal S, Leader G, and Tech M, J Appl Metalwork 1 (1981) 3.Google Scholar
  24. 24.
  25. 25.
    Baron R, Wert J, Gerard D, and Wawner F, J Mater Sci 32 (1997) 6435.CrossRefGoogle Scholar
  26. 26.
    Guo E, Yue H, Fei W, and Wang L, J Compos Mater 46 (2011) 1475.  https://doi.org/10.1177/0021998311421041.CrossRefGoogle Scholar
  27. 27.
    Tekmen C, and Cocen U, J Compos Mater 42 (2008) 1271.  https://doi.org/10.1177/0021998308092195.CrossRefGoogle Scholar
  28. 28.
    Wang Y Q, and Zhou B L, Compos Part A Appl Sci Manuf 27 (1996) 1139.  https://doi.org/10.1016/1359-835X(96)00072-3.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Samson Jerold Samuel Chelladurai
    • 1
  • Ramesh Arthanari
    • 2
  • Kirubaharan Krishnamoorthy
    • 1
  • Kamal Shankar Selvaraj
    • 1
  • Prabu Govindan
    • 1
  1. 1.Department of Mechanical EngineeringSri Krishna College of Engineering and TechnologyCoimbatoreIndia
  2. 2.Department of Mechanical EngineeringSri Krishna College of TechnologyCoimbatoreIndia

Personalised recommendations