Advertisement

Environmental Earth Sciences

, 78:639 | Cite as

Determination of the natural radioactivity in the mineral water distributed in the Salutaris Park, Paraíba do Sul, Brazil

  • Camila Rodrigues e SilvaEmail author
  • Daniela Vasconcelos Machado
  • Emmanoel Vieira da Silva-Filho
Original Article
  • 33 Downloads

Abstract

Humans are daily exposed to the natural radioactivity present in rocks, soils, and water. The distribution of these elements in the surface is not uniform, being influenced by the variation of the physical, geological, and meteorological parameters. The concentration activities of natural radionuclides 238U, 226Ra, 228Ra, and 222Rn were determined in the groundwater supplying the Salutaris Mineral Waters Park, in Paraíba do Sul, in the state of Rio de Janeiro. The concentrations of 238U varied from 0.95 to 2.70 μg L−1 with a mean concentration of 1.96 μg L−1, 226Ra ranged from 1.50 to 12.6 mBq L−1 with an average of 5.03 mBq L−1, 228Ra presented levels between 1.80 and 2.80 mBq L−1, with an average of 2.40 mBq L−1, and 222Rn, with levels of 5.90–1.94 × 104 mBq L−1 with an average concentration of 7.50 Bq L−1. The contribution of the consumption of these radionuclides dissolved in the water distributed in the Park to the effective annual dose ranged from 0.03 to 0.10 mSv year−1, with an average of 0.08 mSv year−1. The results showed that all effective annual dose values per ingestion of these mineral waters were below the individual dose limit of 0.10 mSv year−1 recommended by the World Health Organization (WHO).

Keywords

Drinking mineral water Natural radioactivity Ingestion dose Dose limit 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

References

  1. Altikulaç A, Turhan Ş, Gümüş H (2015) The natural and artificial radionuclides in drinking water samples and consequent population doses. J Radiat Res Appl Sci 8:578–582CrossRefGoogle Scholar
  2. Alves IFDC, Silva-Filho EV, Marques ED, Kütter VT, De Oliveira DN, Silva CR, Gomes OVO (2017) Riscos de ingestão de flúor, estudo de caso para água mineral do interior do estado do Rio de Janeiro. Ver Bras Cien Amb 46:60–74Google Scholar
  3. Bonotto DM (2004) Radioatividade nas águas, da Inglaterra ao Guarani. UNESP, São PauloGoogle Scholar
  4. Bonotto DM (2017) The dissolved uranium concentration and 234U/238U activity ratio in groundwater from spas of southeastern Brazil. J Environ Radioact 166:142–151CrossRefGoogle Scholar
  5. Bonotto DM, Da Silveira EG (2006) Geoquímica do urânio aplicada a águas minerais. UNESP, São PauloGoogle Scholar
  6. Brasil (2017) Ministry of Health. Consolidation of the norms on actions and health services and the Unified Health System. Consolidation Ordinance No. 5, of September 28th of 2017Google Scholar
  7. Camargo IMC, Mazzilli B (1998) Estimativa de risco devido à ingestão de isótopos de urânio em fontes de águas minerais. Rev Saude Publica 32:317–320CrossRefGoogle Scholar
  8. Corrêa JN, Paschuk SA, Kappke J, Denyak V, Schelin HR, Claro FD, Perna AFN, Reque M, Rocha Z, Santos TO (2015) Monitoramento da radioatividade alfa relacionada ao radônio-222 em águas de poços da região metropolitana de Curitiba (PR). Eng Sanit Ambient 20:243–250CrossRefGoogle Scholar
  9. Corval A, Miranda AWA, Tapajós T (2014) Modelos geodinâmicos para o segmento central da Faixa Ribeira e de reativação da porção meridional da Plataforma Sul-Americana no Cretáceo Inferior. [S.l., s.n.]Google Scholar
  10. CPRM - Serviço Geológico do Brasil (2012) Geologia e recursos minerais da folha Três Rios SF.26-Z-B-I, estado do Rio de Janeiro escala 1,100.000. Belo Horizonte, CPRMGoogle Scholar
  11. Crawford-Brown JD (1990) Analysis of the health risk from ingested radon. In: Cothern CR, Rebers PA (eds) Radon, radium and uranium in drinking water. Lewis Publishers, Chelsea, Michigan, pp 17–26Google Scholar
  12. Cruz IFD (2016) Modelagem hidrogeoquímica das águas minerais do Parque Salutaris, Paraíba do Sul, RJ. Dissertation, Federal Fluminense UniversityGoogle Scholar
  13. Da Silva CM (2000) Urânio, radônio-222 e polônio-210 em águas de abastecimento público da região metropolitana do Recife. Dissertation, Federal University of PernambucoGoogle Scholar
  14. De Oliveira, DN (2017) Hidrogeoquímica e indicadores de qualidade das águas superficiais do município de Três Rios/RJ e seu entorno. Dissertation, Federal Fluminense UniversityGoogle Scholar
  15. De Oliveira J, Mazzilli BP, Sampa MHO, Bambalas E (2001) Natural radionuclides in drinking water supplies of São Paulo State, Brazil and consequent population doses. J Environ Radioact 53:99–109CrossRefGoogle Scholar
  16. De Souza DA (2014) Valor de uso, Estudo de caso sobre o Parque das Águas Minerais Salutaris, Paraíba do Sul. Monograph, Federal Rural University of Rio de Janeiro, RJGoogle Scholar
  17. Duggal V, Sharma S, Mehra R (2017) Radon levels in drinking water of Fatehabad district of Haryana, India. Appl Radiat Isot 123:36–40CrossRefGoogle Scholar
  18. Dulaiova H, Burnett WC (2004) An efficient method for γ- spectrometric determination of radium-226, 228 via manganese fibers. Limnol Oceanogr Methods 2:256–261CrossRefGoogle Scholar
  19. EPA - United States Environmental Protection Agency (1999) Radon in drinking water, Factsheet. EPA815-F-99-007Google Scholar
  20. EPA - United States Environmental Protection Agency (2001) Parameters of water quality: interpretation and standards. EPA, IrelandGoogle Scholar
  21. Feitosa FAC, João MF, Feitosa EC, Demetrio JG (2008) Hidrogeologia, Conceitos e Aplicações. CPRM, LABHID, Rio de JaneiroGoogle Scholar
  22. Galbeman JW (1977) Migration of uranium and thorium- exploration significance. American Association of Petroleum Geologists, TulsaGoogle Scholar
  23. Godoy JM, Godoy ML (2006) Natural radioactivity in Brazilian groundwater. J Environ Radioact 85:71–83CrossRefGoogle Scholar
  24. Godoy JM, Ferreira PR, De Souza EM, Da Silva LI, Bittencourt ICS, Fraifeld F (2019) High uranium concentrations in the groundwater of the Rio de Janeiro State. J Br Chem Soc 30:224–233Google Scholar
  25. Gomes OV de O, Cruz IFD, Marque ED, Tapajós T, Corval A, Valente S de C, Garcia JMP, Miranda AWA, Silva-Filho EV (2013) Caracterização hidrogeoquímica preliminar das águas do Parque Salutaris, Paraíba do Sul-RJ. In: Congress proceedings of XIV Congresso Brasileiro de Geoquímica, DiamantinaGoogle Scholar
  26. Groves-Kirkby CJ, Denman AR, Campbell J, Crockett RGM, Phillips PS, Roger S (2016) Is environmental radon gas associated with the incidence of neurodegenerative conditions? A retrospective study of multiple sclerosis in radon affected areas in England and Wales. J Environ Radioact 154:1–14CrossRefGoogle Scholar
  27. Heilbron M, Mohriak W, Valeriano CM, Milani E, Almeida JCH, Tupinambá M (2000) From collision to extension: the roots of the south-eastern continental margin of Brazil. In: Talwani M, Mohriak W (eds) Atlantic rifts and continental margins. [S.l.]: American Geophysical Union (Geophysical Monograph Series, 115)Google Scholar
  28. Hopke PK, Borak TB, Doull J, Cleaver JE, Eckerman KF, Gundersen LCS, Harley NH, Hess CT, Kinner NH, Kopecky KJ, Mckone TE, Sextro RG, Simon SL (2000) Health risks due to radon in drinking water. Environ Sci Technol 34:921–926CrossRefGoogle Scholar
  29. IBGE - Instituto Brasileiro de Geografia e Estatítica (2018). Available in: https://cidades.ibge.gov.br. Accessed Nov 2018
  30. ICRP - International Commission on Radiological Protection (1993) Protection against radon-222 at home and at work. ICRP, New YorkGoogle Scholar
  31. ICRP - International Commission on Radiological Protection (2007) The 2007 Recommendations of the international commission on radiological protection. ICRP, New York. Available  https://doi.org/10.1177/ANIB_37_2-4. Accessed Nov 2018
  32. INMET - Instituto Nacional de Meteorologia (2018). Available in: https://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesautomaticas. Accessed in: out 2018
  33. Landstetter C, Katzlberger C (2009) Determination of 3H, 226Ra, 222Rn and 238U in Austrian ground- and drinking water. J Radioanal Nucl Chem 282:467–471CrossRefGoogle Scholar
  34. Lauria DC, Godoy JM (2000) Origem e transporte de rádio nas águas subterrâneas de Buena/RJ. In: 1st Joint World Congress on Groundwater. Congress proceedings of 1st Joint World Congress on Groundwater, FortalezaGoogle Scholar
  35. Lauria DC, Veiga LHS, Franklin MR (2014) Radioatividade em água potável, Ocorrência, Regulamentação e Aspectos Proteção Radiológica. IRD/CNEN, Rio de JaneiroGoogle Scholar
  36. Pereira RM, Salomão MS, Pedroso EC (2018) Distribuição e controle das fontes de água mineral com elementos raros (Li, V) no Estado do Rio de Janeiro. Anu Inst Geocienc 41:164–178Google Scholar
  37. Pertlik F, Roger JJN, Adams JAS (1974) Uranium. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, BerlinGoogle Scholar
  38. Pfanz H, Yüce G, Gulbay AH, Gokgoz A (2019) Deadly CO2 gases in the Plutonium of Hierapolis (Denizli, Turkey). Archaeol Anthropol Sci 11:1359–1371CrossRefGoogle Scholar
  39. Sánchez AM, Montero MPR, Escobar VG, Vargas MJ (1999) Radioactivity in bottled mineral waters. Appl Radiat Isot 50:1049–1055CrossRefGoogle Scholar
  40. Santos FPC (2010) Radiouclídeos naturais em águas minerais comercializadas na cidade de Recife- PE. Dissertation, Federal University of PernambucoGoogle Scholar
  41. SECEC - Secretaria de Cultura e Economia Criativa do Rio de Janeiro (2019). http://mapadecultura.rj.gov.br/manchete/parque-das-aguas-minerais-salutaris. Accessed July 2019Google Scholar
  42. Silva CR (2019) Avaliação dos níveis de radioatividade natural em centros urbanos e suas implicações a saúde pública. Dissertation, Federal Fluminense UniversityGoogle Scholar
  43. Szabo Z, Zapecza OS (1987) Relation between natural radionuclide activities and chemical constituents in ground water in the Newark Basin, New Jersey. In: Graves B (Ed) Radon, radium, and other radioactivity in ground water. Lewis Publishers, Chelsea, pp 283–308Google Scholar
  44. Szabo Z, De Paul VT, Kraemer TF, Parsa B (2005) Occurrence of radium-224, radium-226, and radium-228 in water of the unconfined Kirkwood–Cohansey aquifer system, southern New Jersey. U.S. Geological Survey Scientific Investigations Report 2004–5224. USGS, Reston, VirginiaGoogle Scholar
  45. Tupinambá M (2007) Geologia da Faixa Ribeira setentrional: Estado da arte e conexões com a Faixa Araçúai. Geonomos 15:67–79Google Scholar
  46. UNSCEAR- United Nations Scientific Committee on the Effects of Atomic Radiations (2000) Sources, effects and risks of ionizing radiation. United Nations, New YorkGoogle Scholar
  47. Wakasugi DSM, Damato SR (2017) Avaliação da concentração de 226Ra, 228Ra e 210Pb em águas minerais dos Parques das Águas de Lambari e Águas de Contendas- MG. In: XVI Congresso Brasileiro de Geoquímica. Congress proceedings of XVI Brazilian Congress of Geochemistry, BúziosGoogle Scholar
  48. WHO - World Health Organization (2004) Guidelines for drinking-water quality. WHO, GenevaGoogle Scholar
  49. WHO - World Health Organization (2011) Guidelines for Drinking- Water Quality, 4th edn. WHO, GenevaGoogle Scholar
  50. WHO - World Health Organization (2017) Guidelines for Drinking- Water Quality, 4th edn. Incorporating the First Addendum, WHO, GenevaGoogle Scholar
  51. Wood WW, Kraemer TF, Shapiro A (2004) Radon (222Rn) in groundwater of fractured rocks: a diffusion/ion exchange model. Ground Water 42:552–567CrossRefGoogle Scholar
  52. Yuce G, Gasparon M (2013) Preliminary risk assessment of radon in groundwater: a case study from Eskisehir, Turkey. Isot Environ Healt S 49:163–179CrossRefGoogle Scholar
  53. Yuce G, Ugurluoglu D, Dilaver AT, Eser T, Sayin M, Donmez M, Ozcelik S, Aydin F (2009) The effects of lithology on water pollution: natural radioactivity and trace elements in water resources of Eskisehir Region (Turkey). Water Air Soil Poll 202:69–89CrossRefGoogle Scholar
  54. Yuce G, Fu CC, D'Alessandro W, Gulbay AH, Lai CW, Bellomo S, Yang TF, Italiano F, Walia V (2017) Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea Fault and Karasu Fault in the Amik Basin (Hatay), Turkey. Chem Geol 469:129–146CrossRefGoogle Scholar
  55. Zabadi H, Mallah K, Saffarini G (2015) Indoor exposure assessment of radon in the elementar schools, Palestine. Int J Radiat Res 13:221–228Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Geociências (Geoquímica)Universidade Federal FluminenseNiteróiBrazil

Personalised recommendations