Advertisement

Environmental Earth Sciences

, 78:643 | Cite as

Incorporation of textural information with SAR and optical imagery for improved land cover mapping

  • Iyyappan MuthukumarasamyEmail author
  • Ramakrishnan S. Shanmugam
  • Tune Usha
Original Article
  • 17 Downloads

Abstract

This study focuses on evaluating the capability and contribution of using backscatter intensity image and textural bands from Sentinel-1A synthetic aperture radar (SAR) data for reducing the limitation of optical image classification and improving the classification accuracy. The study was carried out at Theni district of Tamil Nadu, India, which is characterized by very heterogeneous features. The optical multispectral images such as Linear imaging self scanning sensor-IV (LISS-IV), Sentinel-2A and Landsat8 were used. Support vector machine classifier performed on the different combination of SAR, optical image and texture features. Results showed that the optimal window size was 11 × 11, and mean and variance are optimal textural bands of gray-level co-occurrence matrix techniques. The best classification result was achieved with the combination of LISS-IV and Sentinel-1A-derived features (backscatter intensity and texture features) with an overall accuracy up to 78.49% and a kappa coefficient of up to 0.68, respectively. The combination of optical image and Sentinel-1A data decreased the spectral confusions between the classes, provided better classification results, and reasonably improved the accuracy.

Keywords

SAR GLCM SVM Sentinel-1A LISS-IV Sentinel-2A and Landsat8 OLI 

Notes

Acknowledgements

We are grateful to NRSC-ISRO, NASA and ESA for providing optical and SAR data sets for this study. I sincerely thank Dr. Kari Ramu and Dr. Mehmuna Bagum, Scientist, National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, Government of India for their valuable suggestions.

References

  1. Amarsaikhan D, Blotevogel HH, van Genderen JL et al (2010) Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification. Int J Image Data Fusion 1(1):83–97.  https://doi.org/10.1080/19479830903562041 CrossRefGoogle Scholar
  2. Asner GP (2001) Cloud cover in Landsat observations of the Brazilian Amazon. Int J Remote Sens 22(18):3855–3862CrossRefGoogle Scholar
  3. Brisco B, Brown RJ (1995) Multidate SAR/TM synergism for crop classification in Western Canada. Photogramm Eng Remote Sens 61(8):1009–1014Google Scholar
  4. Cetin M (2015) Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. Int J Sustain Dev World Ecol 22(5):420–424Google Scholar
  5. Cetin M (2016) Sustainability of urban coastal area management: a case study on Cide. J Sustain For 35(7):527–541CrossRefGoogle Scholar
  6. Cetin M, Adiguzel F, Kaya O, Sahap A (2018) Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ Dev Sustain 20(1):361–375.  https://doi.org/10.1007/s10668-016-9885-5 CrossRefGoogle Scholar
  7. Franklin SE, Wulder MA, Gerylo GR (2001) Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia. Int J Remote Sens 22(13):2627–2632.  https://doi.org/10.1080/01431160120769 CrossRefGoogle Scholar
  8. Fukuda S, Hirosawa H (2001) Support vector machine classification of land cover: application to polarimetric SAR data. IEEE Geosci Remote Sens Symp 1(5):187–189.  https://doi.org/10.1109/IGARSS.2001.976097 CrossRefGoogle Scholar
  9. Gao G (2010) Statistical modeling of SAR images: a survey. Sensors 10:775–795.  https://doi.org/10.3390/s100100775 CrossRefGoogle Scholar
  10. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621.  https://doi.org/10.1109/TSMC.1973.4309314 CrossRefGoogle Scholar
  11. Heiselberg H (2016) A direct and fast methodology for ship recognition in sentinel-2 multispectral imagery. Remote Sens 8(12):1–11.  https://doi.org/10.3390/rs8121033 CrossRefGoogle Scholar
  12. Iyyappan M, Ramakrishnan SS, Srinivasa Raju K (2014) Study of discrimination between plantation and dense scrub based on backscattering behavior of C band SAR data. Int Arch Photogramm Remote Sens Spat Inf Sci (ISPRS Arch XL) 8:755–760.  https://doi.org/10.5194/isprsarchives-xl-8-755-2014 CrossRefGoogle Scholar
  13. Joshi N, Baumann M, Ehammer A, Fensholt R, Grogan K, Hostert P, Jepsen MR, Kuemmerle T, Meyfroidt P, Mitchard ET, Reiche J (2016) A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens 8(1):70CrossRefGoogle Scholar
  14. Kaya E, Agca M, Adiguzel F, Cetin M (2018) Spatial data analysis with R programming for environment. Hum Ecol Risk Assess Int J.  https://doi.org/10.1080/10807039.2018.1470896 CrossRefGoogle Scholar
  15. Kurosu T, Uratsuka S, Maeno H, Kozu T (1999) Texture statistics for classification of land use with multitemporal JERS-1 SAR single-look imagery. IEEE Trans Geosci Remote Sens 37(1):227–235.  https://doi.org/10.1109/36.739157 CrossRefGoogle Scholar
  16. Kuzucu AK, Balcik FB (2017) Testing the potential of vegetation indices for land use/cover classification using high resolution data. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:279CrossRefGoogle Scholar
  17. Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation, 5th edn. Wiley, New YorkGoogle Scholar
  18. Lu D, Weng Q (2006) Use of impervious surface in urban land-use classification. Remote Sens Environ 102:146–160.  https://doi.org/10.1016/j.rse.2006.02.010 CrossRefGoogle Scholar
  19. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870.  https://doi.org/10.1080/01431160600746456 CrossRefGoogle Scholar
  20. Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing. GIS and MIF techniques. Geosci Front 3(2):189–196.  https://doi.org/10.1016/j.gsf.2011.10.007 CrossRefGoogle Scholar
  21. Mishra P, Singh D, Yamaguchi Y (2011) Land cover classification of palsar images by knowledge based decision tree classifier and supervised classifiers based on SAR observables. Prog Electromagn Res B 30:47–70.  https://doi.org/10.2528/PIERB11011405 CrossRefGoogle Scholar
  22. Mishra VN, Kumar P, Gupta DK, Prasad R (2014) Classification of various land features using Risat-1 dual polarimetric data. Int Arch Photogramm Remote Sens Spat Inf Sci (ISPRS Arch XL) 8:833–837.  https://doi.org/10.5194/isprsarchives-xl-8-833-2014 CrossRefGoogle Scholar
  23. Mishra VN, Prasad R, Kumar P et al (2017) Dual-polarimetric C-band SAR data for land use/land cover classification by incorporating textural information. Environ Earth Sci.  https://doi.org/10.1007/s12665-016-6341-7 CrossRefGoogle Scholar
  24. Muthukumarasamy I, Shanmugam RS, Kolanuvada SR (2017) SAR polarimetric decomposition with ALOS PALSAR-1 for agricultural land and other land use/cover classification: case study in Rajasthan, India. Environ Earth Sci 76:455.  https://doi.org/10.1007/s12665-017-6783-6 CrossRefGoogle Scholar
  25. Ndi Nyoungui A, Tonye E, Akono A (2002) Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images. Int J Remote Sens 23(9):1895–1925.  https://doi.org/10.1080/01431160110036157 CrossRefGoogle Scholar
  26. Ng WT, Rima P, Einzmann K et al (2017) Assessing the potential of Sentinel-2 and pléiades data for the detection of prosopis and vachellia spp. in Kenya. Remote Sens.  https://doi.org/10.3390/rs9010074 CrossRefGoogle Scholar
  27. Niu X, Ban Y (2013) Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. Int J Remote Sens 34(1):1–26.  https://doi.org/10.1080/01431161.2012.700133 CrossRefGoogle Scholar
  28. de Oliveira Silveira EM, de Menezes MD, Acerbi Júnior FW, Santos Terra MCN, de Mello JM (2017) Assessment of geostatistical features for object-based image classification of contrasted landscape vegetation cover. J Appl Remote Sens 11(3):036004. https://doi.org/10.1117/1.JRS.11.036004 CrossRefGoogle Scholar
  29. Omar H, Misman MA, Kassim AR (2017) Synergetic of PALSAR-2 and Sentinel-1A SAR polarimetry for retrieving aboveground biomass in dipterocarp forest of Malaysia. Appl Sci.  https://doi.org/10.3390/app7070675 CrossRefGoogle Scholar
  30. Parihar N, Rathore VS, Mohan S (2016) Combining ALOS PALSAR and AVNIR-2 data for effective land use/land cover classification in Jharia coalfields region. Int J Image Data Fusion.  https://doi.org/10.1080/19479832.2016.1273258 CrossRefGoogle Scholar
  31. Sambodo KA, Indriasari N (2013) Land cover classification of Alos Palsar data using support vector machine. Int J Remote Sens Earth Sci 10(1):9–18.  https://doi.org/10.1128/JB.00758-15 CrossRefGoogle Scholar
  32. Solberg AHS, Jain AK, Taxt T (1994) Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images. IEEE Trans Geosci Remote Sens 32(4):768–778.  https://doi.org/10.1109/36.298006 CrossRefGoogle Scholar
  33. Stramondo S, Bignami C, Chini M et al (2006) Satellite radar and optical remote sensing for earthquake damage detection: results from different case studies. Int J Remote Sens 27(20):4433–4447.  https://doi.org/10.1080/01431160600675895 CrossRefGoogle Scholar
  34. Thanabalan P, Vidhya R (2016) A synergistic approach for soil moisture estimation using modified Dubois model with dual polarized SAR and optical satellite data. Land Surf Cryosphere Remote Sens III 9877:98770Y.  https://doi.org/10.1117/12.2223751 CrossRefGoogle Scholar
  35. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Nueral Netw 10(5):988–999CrossRefGoogle Scholar
  36. Verhegghen A, Eva H, Ceccherini G et al (2016) The potential of sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sens 8(986):1–22.  https://doi.org/10.3390/rs8120986 CrossRefGoogle Scholar
  37. Walsh SJ, McCleary AL, Mena CF, Shao Y, Tuttle JP, González A, Atkinson R (2008) QuickBird and Hyperion data analysis of an invasive plant species in the Galapagos Islands of Ecuador: implications for control and land use management. Remote Sens Environ 112(5):1927–1941CrossRefGoogle Scholar
  38. Ward D, Phinn SR, Murray AT (2000) Monitoring growth in rapidly urbanizing areas using remotely sensed data. Prof Geogr 52(3):371–386CrossRefGoogle Scholar
  39. Wei L, Hu Z, Gu M et al. (2012) Texture feature analysis in oil spill monitoring by SAR image. In: IEEE - 2012 20th international conference on geoinformatics, pp 1–6.  https://doi.org/10.1109/Geoinformatics.2012.6270284
  40. Wu S, Xu B, Wang L (2006) Urban land-use classification using variogram-based analysis with an aerial photograph. Photogramm Eng Remote Sens 72(7):813–822.  https://doi.org/10.14358/PERS.72.7.813 CrossRefGoogle Scholar
  41. Wu X, Peng J, Shan J, Cui W (2015) Evaluation of semivariogram features for object-based image classification. Geospat Inf Sci 18(4):159–170.  https://doi.org/10.1080/10095020.2015.1116206 CrossRefGoogle Scholar
  42. Zakeri H, Yamazaki F, Liu W (2017) Texture analysis and land cover classification of Tehran using polarimetric synthetic aperture radar imagery. Appl Sci.  https://doi.org/10.3390/app7050452 CrossRefGoogle Scholar
  43. Zhang H, Lin H, Li Y (2015) Impacts of feature normalization on optical and SAR data fusion for land use/land cover classification. IEEE Geosci Remote Sens Lett 12(5):1061–1065.  https://doi.org/10.1109/LGRS.2014.2377722 CrossRefGoogle Scholar
  44. Zou T, Yang W, Dai D, Sun H (2010) Polarimetric SAR image classification using multifeatures combination and extremely randomized clustering forests. EURASIP J Adv Signal Process.  https://doi.org/10.1155/2010/465612 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Remote SensingAnna UniversityChennaiIndia
  2. 2.National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, Government of IndiaChennaiIndia

Personalised recommendations