Advertisement

Environmental Earth Sciences

, 78:642 | Cite as

Hydrochemical and contamination evolution of Rio Bonito aquifer in the Carboniferous region, Paraná Basin, Brazil

  • Angela da Silva BellettiniEmail author
  • Antônio Pedro Viero
  • Artur Cesar Bastos Neto
Original Article
  • 41 Downloads

Abstract

Groundwater is an essential natural reserve of fresh water in the world. However, population and economic growth in many countries has caused the contamination of many aquifers. Water crises make significant any study of the Paraná Basin aquifers, composed of several geological formations with high capacity of storage and transmission of water. In this context, Rio Bonito aquifer is in part located in the Carboniferous Region of Santa Catarina state (Brazil) and in the Araranguá Hydrographic Basin. The carboniferous region is known for coal mining and minimal care for the environment which led to damaging consequences. In this study, the interpretation of chemical data from nine wells monitored by ‘Grupo Técnico de Assessoramento’ (GTA, Relatório de Monitoramento dos Indicadores Ambientais (Internal technical reports referent the years 2006–2018), vol 1. Ação Civil Pública n. 93.8000.533-4. Processo de cumprimento de sentença n. 2000.72.04.002543-9. Criciúma, Brasil, 2018) was performed with binary variation diagrams, photo interpretation and comparison with local geology. This resulted in the identification of four groundwater groups with different hydrogeochemical characteristics, due to processes of water/rock interaction and contamination by the coal mines. The petrographic analysis defined that the sandstones from top coal layer of Rio Bonito aquifer is of the fractured type. The results indicate that the Rio Bonito aquifer in the studied region is contaminated by coal mining with high levels in limited areas, but only in one well. Groundwater quality is monitored in the Rio Bonito aquifer, which is very important for the management of water use and mitigation of existing contamination, but also to prevent contamination of other areas.

Keywords

Groundwater Contamination Carboniferous region Hydrogeochemical Paraná Basin 

Notes

Acknowledgements

The authors are grateful to the Geological Service of Brazil (Companhia de Pesquisa e Recursos Minerais) and the ‘Grupo Técnico de Assessoramento à ação civil pública no. 93.8000533-4’ for the monitoring data and Programa de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul for overall support.

References

  1. ABNT (2010) ABNT NBR 1847 Amostragem de águas subterrâneas em poços de monitoramento—métodos de purga. Associação Brasileira de Normas Técnicas, Rio de Janeiro, p 15Google Scholar
  2. AESRD-Alberta Environmental and Sustainable Resource Development (2011) Nitrate in groundwater. http://environment.alberta.ca/02884.html. Accessed 20 Jan 2018
  3. Alexandre NZ (1999) Diagnóstico Ambiental da Região Carbonífera de Santa Catarina: degradação dos recursos naturais. Revista Tecnologia e Ambiente, UNESC 5(2):35–50Google Scholar
  4. American Water Works Association and Water Environment Federation (1998) Standard methods for the examination of water and wastewater. Washington, DC 20001-3710Google Scholar
  5. Araújo LM, França AB, Potter PE (1999) Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Paraná Basins, South America, and comparison with the Navajo-Nugget Aquifer System, USA. Hydrogeol J 7:317–336CrossRefGoogle Scholar
  6. Brasil (2008) Ministério do Meio Ambiente. Resolução CONAMA no. 396, de 03 de abril de 2008. Dispõe sobre a classificação e diretrizes ambientais para o enquadramento das águas subterrâneas e dá outras providências. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=562. Accessed 29 Nov 2018
  7. Campos HCNS (2000) Modelación Conceptual y Matemática del Aquífero Guarani, Cono Sur. Acta Geológica Leopoldinense Série Mapas 4:3–50Google Scholar
  8. CETEM-Centro de Tecnologia Mineral (2005) Estudo Geológico—Hidrogeológico da lavra Subterrânea, Meta Física 1. Project CTENERG: ONG Terra Verde, CETEM, PROGERA. Agreement FINEP 01.02.0167.00Google Scholar
  9. Dejwakh N (2006) Sources of nitrate in groundwater below a major agricultural area: the high plains in midwest United States. US Geological Survey (USGS)Google Scholar
  10. Departamento Nacional de Produção Mineral-DNPM, Sindicato da Indústria de Extração de Carvão do Estado de Santa Catarina—SIECESC (2009) Mapa das áreas mineradas em subsolo região carbonífera de Santa Catarina. Geoprocessing DNPM/SC, scale 1:3, vector files and pdfGoogle Scholar
  11. Dias A (1995) Geologia do Município de Criciúma. Programa de Informações Básicas de Santa Catarina—PROJESC. Porto Alegre: Serviço Geológico do Brasil—CPRM. Séries Cartas Temáticas v. 23Google Scholar
  12. Fetter CW (2008) Contaminant hydrogeology, 2nd edn. Waveland Press, New York, p 500Google Scholar
  13. Grupo Técnico de Assessoramento-GTA (2018) Relatório de Monitoramento dos Indicadores Ambientais (Internal technical reports referent the years 2006–2018), vol 1. Ação Civil Pública no. 93.8000.533-4. Processo de cumprimento de sentença no. 2000.72.04.002543-9. Criciúma, BrasilGoogle Scholar
  14. Hachiro J (1997) O Subgrupo Irati (Neopermiano) da Bacia do Paraná. Doctoral thesis. USP, São Paulo, BrazilGoogle Scholar
  15. Holz M, França AB, Souza PA, Iannuzzi R, Rohn R (2010) A stratigraphic chart of the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil, South America. J S Am Earth Sci 29:381–399.  https://doi.org/10.1016/j.jsames.2009.04.004 CrossRefGoogle Scholar
  16. Kalkreuth W, Holz M, Mexias A, Balbinot M, Levandowski J, Willett J, Finkelman R, Burger H (2010) Depositional setting, petrology and chemistry of Permian coals from the Paraná Basin: 2 South Santa Catarina Coalfield, Brazil. Inter J Coal Geol 84:213–236.  https://doi.org/10.1016/j.coal.2010.08.008 CrossRefGoogle Scholar
  17. Kern ML, Viero AP, Machado G (2008) The fluoride in the groundwater of Guarani Aquifer System: the origin associated with black shales of Paraná Basin. Environ Geol 55:1219–1233CrossRefGoogle Scholar
  18. Krebs ASJ (2004) Contribuição ao conhecimento dos recursos hídricos subterrâneos da bacia hidrográfica do rio Araranguá, SC. Doctoral thesis, Universidade Federal de Santa Catarina. http://rigeo.cprm.gov.br/jspui/handle/doc/284. Accessed 30 Apr 2018
  19. Krebs ASJ, Alexandre NZ (2000) Recursos hídricos da bacia hidrográfica do rio Araranguá—SC: Disponibilidade e conflitos. 1st Joint World Congress on GroundwaterGoogle Scholar
  20. Krebs ASJ, Possa MV (2008) O papel da hidrogeologia como instrumento de gestão ambiental na mineração de carvão. In: Soares OS, Santos MDC, Possa MV (eds) Carvão Brasileiro: Tecnologia e Meio Ambiente. CETEM/MCT, Rio de Janeiro, pp 109–127Google Scholar
  21. Kresic N (2007) Hydrogeology and groundwater modeling. Taylor & Francis Group, CRC Press, Boca RatonGoogle Scholar
  22. Machado JLF (2013) Mapa hidrogeológico do estado de Santa Catarina: relatório. Porto Alegre: CPRM. Escala 1:500.000. http://rigeo.cprm.gov.br/jspui/handle/doc/11594. Acessed 15 Out 2018
  23. Machado JLF, Peruffo N, Lima J (1984) Projeto estudo da vulnerabilidade a contaminação dos mananciais subterrâneos decorrente da extração do carvão mineral: relatório final da 1. Fase. Porto Alegre: CPRM. v.1. http://rigeo.cprm.gov.br/jspui/handle/doc/7606. Acessed 15 Out 2018
  24. Margat J, Van der Gun J (2013) Groundwater around the world: a geographic synopsis. CRC Press, Boca RatonCrossRefGoogle Scholar
  25. Mcmahon PB, Bohlke JK (2006) Regional Patterns in the Isotopic Composition of Natural and Anthropogenic Nitrate in Groundwater, High Plains, USA. Environ Sci Technol 40:2965–2970CrossRefGoogle Scholar
  26. Milani EJ, França AB, Schneider RL (1994) Bacia do Paraná. Boletim de Geociências Petrobrás 8(1):69–82Google Scholar
  27. Milani EJ, Melo JHG, Souza PA, Fernandes LA, França AB (2007) Bacia do Paraná. Boletim de Geociências Petrobrás 15(2):265–287Google Scholar
  28. Philipp W, Kalkreuth W, Busch A, Krooss BM (2010) High-pressure methane and carbon dioxide sorption on coal and shale samples from the Paraná basin, Brazil. Int J Coal Geol 84:190–205CrossRefGoogle Scholar
  29. Poehls DJ, Smith GJ (2009) Encyclopedic dictionary of Hydrogeology. Academic Press, Elsevier. ISBN 978-0-12-558690-0Google Scholar
  30. Roisenberg C, Viero AP, Schwarzbach MSR, Roisenberg A, Morante IC (2003) Caracterização geoquímica e gênese dos principais íons das águas subterrâneas de Porto Alegre, RS. Revista Brasileira de Recursos hídricos 8:137–147CrossRefGoogle Scholar
  31. Schneider RL, Mühlmann H, Tommasi E, Medeiros RA, Daemon RF, Nogueira AA (1974) Revisão Estratigráfica da Bacia do Paraná. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 18, Porto Alegre, Sociedade Brasileira de Geologia 1:41–66Google Scholar
  32. Secretaria de Desenvolvimento Sustentável de Santa Catarina/Departamento de Recursos Hídricos-SDS/DRHI (2013/2015) Bacias da Região Carbonífera modified OTTOBACIA. Geoprocessing SDS/DRHI, shapefile, scale 1:5.000Google Scholar
  33. Serviço Geológico do Brasil-CPRM (2014) hidrogeobrasil_lito.zip. [S.l.]. Vector files and raster, 80.9 Mb. In: http://189.9.170.22:8080/cprm/geobank.documents.download?id_sessao=20151211094807&usuario=1&file=hidrogeobrasil_lito.zip. Accessed 5 Apr 2018
  34. Serviço Geológico do Brasil-CPRM (2018) Internal Technical report of the covenant with MMA referent the years 2008-2018 (covenant term no. 003/2014-SMCQ/MMA (2014–2019); covenant term 2012–2014; covenant term 2010–2011; covenant term 2009–2010 and covenant term 2008–2009). Porto Alegre, BrasilGoogle Scholar
  35. Sposito G (2016) The chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  36. Teixeira GV, Viero AP (2017) Hydrogeochemical evolution of Mesozoic aquifers in the Southern Paraná Basin in western Rio Grande do Sul State, Brazil. Águas Subterrâneas 31:36–51CrossRefGoogle Scholar
  37. White IC (1908) Relatório Final da Comissão de Estudos das Minas de Carvão de Pedra do Brasil. DNPM, Rio de Janeiro, pp 301–617Google Scholar
  38. Wildner W, Camozzato E, Toniolo JA, Binotto RB, Iglesias CMF, Laux JH (2014) Mapa Geológico do Estado de Santa Catarina. Porto Alegre. Escala 1:500,000. Programa Geologia do Brasil. Subprograma de Cartografia Geológica RegionalGoogle Scholar
  39. Wolery TJ (1992) EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geological Survey of Brazil (Companhia de Pesquisa de Recursos Minerais)Porto AlegreBrazil
  2. 2.Instituto de GeociênciasUniversidade Federal Do Rio Grande Do SulPorto AlegreBrazil

Personalised recommendations