Environmental Earth Sciences

, 78:559 | Cite as

Long-term water and sediment quality of the Elbe River’s oxbow lake near the town of Poděbrady, the Czech Republic

  • Petra Havlíková
  • Dagmar ChalupováEmail author
  • Tomáš Chuman
  • Miroslav Šobr
  • Bohumír Janský
Original Article


The studied oxbow lake near the town of Poděbrady (the Czech Republic) belongs to unique, less influenced old meanders of the Elbe River that are still completely surrounded by floodplain forests. The research works (2004–2015) included bathymetry, hydrological regime, water and sediment quality, and hydrobiological analyses. Due to the connection with the river, the hydrological regime was significantly determined by the Elbe River. Spatial electrical conductivity differences were found. Values of pH fluctuated (lower ANC4.5) during the year rising with phytoplankton development. Associated parameter of organic matter content (mean CODMn = 5.5 mg L−1) was similar to that in the river. The Elbe represented a source of nitrogen (max. N-NO3 = 5.9 mg L−1) and phosphorus for the lake, where the phosphorus concentrations reached maximum levels in summer (max. TP = 0.220 mg L−1) under low oxygen saturation. The concentrations of Cd, As, Hg, and Pb in sediments exceeded the upper limit values set in the new assessment system developed by the International Commission for the Protection of the Elbe River, and together with a high index of geoaccumulation in the case of Ag, the concentrations of these elements indicate significant contamination. Although the lake was not extremely polluted, high concentrations of nutrients and sediment load could represent a risk for aquatic ecosystems. The comparison of the results with other studies on oxbow lakes situated in different river basins provided new and complex conclusions in a broader context.


Water quality Zooplankton Sediment quality Heavy metals Oxbow lake The Elbe River 



Many thanks are due to all the people who enabled this research, especially field work and laboratory analyses. This research was supported by Charles University in Prague, project UNCE/HUM/018—Regions and places during intensive globalization: underlying forces and mechanisms of development, and research programme PROGRES Q44—Geography.


  1. Amoros C, Roux AL, Reygrobellet JL, Bravard JP, Pautou G (1987) A Method for applied ecological studies of fluvial hydrosystems. Regul Rivers 1:17–36CrossRefGoogle Scholar
  2. Bábek O, Hilscherová K, Nehyba S, Zeman J, Famera M, Franců J, Holoubek I, Machát J, Klánová J (2008) Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Morava River (Danube catchment area), Czech Republic. J Soils Sediments 8:165–176CrossRefGoogle Scholar
  3. Balatka B, Kalvoda J (2006) Geomorfologické členění reliéfu Čech. Kartografie, PrahaGoogle Scholar
  4. Brandl Z (2005) Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546:475–489CrossRefGoogle Scholar
  5. Chalupová D (2011) Chemismus vody a sedimentů fluviálních jezer Labe. Disertace, PřF UK, PrahaGoogle Scholar
  6. Chalupová D, Janský B (2003) Limnologické poměry, kvalita vody a sedimentů v labském rameni Doleháj u Kolína. In: Janský B, Šobr M (eds) Jezera České republiky. PřF UK, Praha, pp 150–170Google Scholar
  7. Chalupová D, Janský B (2007) Anthropogenic impact on selected oxbow lakes in the Elbe River floodplain. J Hydrol Hydromech 55:86–97Google Scholar
  8. Chalupová D, Havlíková P, Janský B (2012) Water quality of selected fluvial lakes in the context of the Elbe River pollution and anthropogenic activities in the floodplain. Environ Monit Assess 184:6283–6295CrossRefGoogle Scholar
  9. Chalupová D, Janský B, Langhammer J, Medek J, Král S, Černý M, Žáček M, Jiřinec P, Ingeduldová E, Kaiglová J, Šobr M, Leontovyčová D, Halířová J (2014) Bedeutung der Altsedimente der Elbe und ihrer Seitenstrukturen im Abschnitt von Pardubice/Pardubitz bis Moldaumündung für das Sedimentmanagement im Einzugsgebiet der Elbe (SedLa). Endbericht. Karls Universität, Povodí Labe, s.p., DHI a.s., Prag, Hradec KrálovéGoogle Scholar
  10. Chlupáč I, Brzobohatý R, Kovanda J, Stráník Z (2002) Geologická minulost České republiky. Academia, PrahaGoogle Scholar
  11. Dawidek J, Turczyńsky M (2006) Recharge of lakes with river waters in the middle Bug valley. Limnol Review 6:65–72Google Scholar
  12. Ebdon L, Evans EH, Fischer A, Hill SJ (1998) An introduction to analytical atomic spectrometry. Wiley, ChichesterGoogle Scholar
  13. Einsle U (1993) Crustacea, Copepoda: Calanoida und Cyclopoida. G. Fischer, StuttgartGoogle Scholar
  14. ELSA (2016) PCB in der Elbe—Eigenschaften, Vorkommen und Trends sowie Ursachen und Folgen der erhöhten Freisetzung im Jahr 2015. Behörde für Umwelt und Energie, HamburgGoogle Scholar
  15. Ferronato Ch, Vianello G, Antisari LV (2015) Heavy metal risk assessment after oxidation of dredged sediments through speciation and availability studies in the Reno river basin, Northern Italy. J Soils Sediments 15:1235–1245CrossRefGoogle Scholar
  16. Floessner D (2000) Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, LeidenGoogle Scholar
  17. Grosbois C, Meybeck M, Lestel L, Lefevre I, Moatar F (2012) Severe and contracted polymetallic contamination patterns (1900–2009) in the Loira River sediments (France). Sci Total Environ 435–436:290–305CrossRefGoogle Scholar
  18. Haismanová P (2015) Antropogenní znečištění Labských sedimentů. PřF UK, PrahaGoogle Scholar
  19. Havlíková P, Chuman T, Janský B (2017) Comparative study of fluvial lakes in floodplains of the Elbe, Lužnice and Svratka rivers based on hydrochemical and biological approach. Environ Monit Assess. CrossRefGoogle Scholar
  20. Heininger P, Dušek B, Halířová J, Kliment V, Langhammer J, Medek J, Hildebrandt T, Kasimir P, Netzband A, Quick I, Rohde S, Schwandt D, Schwartz R, Vollmer S (2014) Conception MKOL for sediment treatment, Proposal of good practice for sediment management in the Elbe River catchment for achievement of regional operative goals. ICPER, MagdeburgGoogle Scholar
  21. Heise S (2015) Zur Belastung von Sedimenten mit Spurenmetallen und historischen organichen Schadstoffen in Altarmen der Elbe. Hydrol Wasserbewirtsch 59:332–341Google Scholar
  22. Hou X, Jones BT (2000) Inductively coupled plasma/optical emission spectrometry. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, UK, pp 9468–9485Google Scholar
  23. Illyová M (2006) Zooplankton of two arms in the Morava River floodplain in Slovakia. Biol Bratisl 61:531–539CrossRefGoogle Scholar
  24. Kalff J (2002) Limnology. Prentice Hall, Englewood CliffsGoogle Scholar
  25. Klouček O, Janský B (2003) Limnologické poměry, kvalita vody a sedimentů v Labišti pod Opočínkem. In: Janský B, Šobr M (eds) Jezera České republiky. PřF UK, Praha, pp 125–149Google Scholar
  26. Krýžová E (2007) Vztah vegetace a faktorů prostředí vybraných labských tůní. PřF UK, PrahaGoogle Scholar
  27. Kufel L, Leśniczuk S (2014) Hydrological connectivity as most probable key driver of chlorophyll and nutrients in oxbow lakes of the Bug River (Poland). Limnologica 46:94–98CrossRefGoogle Scholar
  28. Langhammer J (2009) Water quality changes in the Elbe River Basin, Czech Republic, in the context of the post-socialist economic transition. Geo Journal 75:185–198Google Scholar
  29. Lelková E, Kočárková A, Poulíčková A (2004) Phytoplankton ecology of two floodplain pools near Olomouc. Phycology 4:111–121Google Scholar
  30. Lellák J, Kubíček F (1991) Hydrobiologie. Karolinum, PrahaGoogle Scholar
  31. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, MaldenGoogle Scholar
  32. Mudroch A, Azcue JM, Mudroch P (1997) Manual of physico-chemical analysis of aquatic sediments. CRC Press, Levis Publishers, New YorkGoogle Scholar
  33. Müller G (1979) Schwermetalle in den sedimenten des Rheins – Veränderungen seit 1971. Umschau 24:778–783Google Scholar
  34. Nguyen HL, Braun M, Szaloki I, Baeyens W, Van Grieken R, Leermakers M (2009) Tracing the metal pollution history of the Tisza River through the analysis of sediment depth profile. Water Air Soil Pollut 200:119–132CrossRefGoogle Scholar
  35. Pechar L (1987) Use of the acetone–methanol mixture for extraction and spectrophotometric determination of chlorophyll a in phytoplankton. Algol Stud 46:99–117Google Scholar
  36. Pechar L, Hrbáček J, Pithart D, Dvořák J (1996) Ecology of pools in the floodplain. In: Prach K, Jeník J, Large ARG (eds) Floodplain ecology and management: the Lužnice River in the Třeboň Biosphere Reserve, Central Europe. SPB Academic Publishing, Amsterdam, pp 209–226Google Scholar
  37. Pithart D (1999) Phytoplankton and water chemistry of several alluvial pools and oxbows after the flood event—a process of diversification. Algol Stud 95:93–113Google Scholar
  38. Pithart D, Pechar L (1995) The stratification of pools in the alluvium of the river Lužnice. Int Rev Gesamten Hydrobiol Hydrogr 80:61–75CrossRefGoogle Scholar
  39. Pithart D, Pichlová R, Bílý M, Hrbáček J, Novotná K, Pechar L (2007) Spatial and temporal diversity of small shallow waters in River Lužnice floodplain. Hydrobiologia 584:265–275CrossRefGoogle Scholar
  40. Prach K, Jeník J, Large ARG (1996) Floodplain Ecology and Management: the Lužnice River in the Třeboň Biosphere Reserve, Central Europe. SPB Academic Publishing, AmsterdamGoogle Scholar
  41. Rudiš M (2000) Assessment of polluted sediments in canalised section of the Czech Elbe River. J Hydrol Hydromech 58:32–51Google Scholar
  42. Šnajdr M, Janský B (2003) Limnologické poměry, kvalita vody a sedimentů v labském rameni u Obříství. In: Janský B, Šobr M (eds) Jezera České republiky. PřF UK, Praha, pp 109–124Google Scholar
  43. Sommer U, Gliwitz ZM, Lampert W, Duncan A (1996) The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiol 106:433–471Google Scholar
  44. Štěrba O (2003) Jak a proč zkoumáme říční krajnu. In: Měkotová J, Štěrba O (eds) Sborník z konference Říční krajina. Univ Palackého v Olomouci, Olomouc, pp 7–9Google Scholar
  45. Štěrba O, Měkotová J, Bednář V, Šarapatka B, Rychnovská M, Kubíček F, Řehořek V (2008) River landscape and its ecosystems. Univerzita Palackého v Olomouci, OlomoucGoogle Scholar
  46. Tolasz R, Brázdil R, Bulíř O, Dobrovolný P, Dubrovský M, Hájková L, Halásová O, Hostýnek J, Janouch M, Kohut M, Krška K, Křivancová S, Květoň V, Lepka Z, Lipina P, Macková J, Metelka L, Míková T, Mrkvica Z, Možný M, Nekovář J, Němec L, Pokorný J, Reitschläger JD, Richterová D, Rožnovský D, Řepka M, Semerádová D, Sosna V, Stříž M, Šercl P, Škáchová H, Štěpánek P, Štěpánková P, Trnka M, Valeriánová A, Valter J, Vaníček K, Vavruška F, Voženílek V, Vráblík T, Vysoudil M, Zahradníček J, Zusková I, Žák M, Žalud Z (2007) Atlas podnebí Česka, ČHMÚ. Univerzita Palackého, Praha, OlomoucGoogle Scholar
  47. Turek M (2005) Libišská tůň v přírodní rezervaci Černínovsko: současný stav a antropogenní narušení ekosystému fluviálního jezera z komplexně limnologického pohledu. Geografie Sborník ČGS 110:243–254Google Scholar
  48. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth`s crust. Bull Geol Soc Am 72:175–192CrossRefGoogle Scholar
  49. Wedepohl KH (1968) Chemical fractionation in sedimentary environment. In: Ahrends LH (ed) Origin and distribution of the elements. Pergamon Press, New York, pp 999–1016CrossRefGoogle Scholar
  50. Wetzel RG (2001) Limnology. Lake and river ecosystems. Academic Press, Elsevier Science, San DiegoGoogle Scholar
  51. Zachmann DW, van der Veen A, Friese K (2013) Floodplain lakes as an archive for the metal pollution in the River Elbe (Germany) during the 20th century. Appl Geochem 35:14–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Petra Havlíková
    • 1
  • Dagmar Chalupová
    • 1
    Email author
  • Tomáš Chuman
    • 1
  • Miroslav Šobr
    • 1
  • Bohumír Janský
    • 1
  1. 1.Department of Physical Geography and Geoecology, Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations