Environmental Earth Sciences

, 78:545 | Cite as

Punctuated ASM strengthening in late Heinrich Stadial from speleothem records, southern China

  • Yifan Fang
  • Shushuang Liu
  • Dianbing LiuEmail author
  • Linzhe Zou
Original Article


The dynamical adjustment process (DAP) is a requisite for climate system to arrange for a new equilibrium state. To evaluate the detailed structure of DAP during Heinrich Stadial (HS), high-resolution speleothem-based Asian summer monsoon (ASM) variability was reconstructed, separately covering HSs 5 to 1. In these calcite δ18O records, a gradual increase of ASM intensity is evident in each mid-HS, followed by a centennial-scale ASM stability lasting on average 590 years during late HS. At this time, δ18O values decrease by 1%, about 50% of the total HS, compared with maximum values in early HS. This structure of monsoonal HS in speleothem records is not reflected in temperature variations at the Greenland, but is well mirrored in middle- to low latitudes within the northern hemisphere, and even southern oceanic records. It suggests that southern and low-latitude climate conditions are likely important for the termination of HS. Thus, a DAP of about 400–600 years is a precondition for the ASM sub-system to prepare for a new equilibrium.


Speleothems Asian summer monsoon Heinrich Stadial Dynamical adjustment process 



We are grateful to two anonymous reviewers for their critical and instructive comments on an early version of this manuscript. This work was jointly supported by grants from the National Key R&D Program of China (No. 2016YFA0600401) and the National Nature Science Foundation of China (No. 41672161), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (164320H116), the Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, and the Key Laboratory of Virtual Geographic Environments (Nanjing Normal University).

Supplementary material

12665_2019_8559_MOESM1_ESM.doc (710 kb)
Supplementary material 1 (DOC 710 kb)


  1. Anderson RF, Ali S, Bradtmiller LI, Nielsen SHH, Fleisher MQ, Anderson BE, Burckle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323:1443–1448CrossRefGoogle Scholar
  2. Bard E, Rostek F, Turon JL, Gendreau S (2000) Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289:1321–1324CrossRefGoogle Scholar
  3. Baumgartner M, Schilt A, Eicher O, Schmitt J, Schwander J, Spahni R, Fischer H, Stocker TF (2012) High-resolution interpolar difference of atmospheric methane around the last glacial maximum. Biogeosciences 9:3961–3977CrossRefGoogle Scholar
  4. Bereiter B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J (2018) Mean global ocean temperatures during the last glacial transition. Nature 553:39–44CrossRefGoogle Scholar
  5. Broecker WS, McGee D, Adams KD, Cheng H, Edwards RL, Oviatt CG, Quade J (2009) A great basin-wide dry episode during the first half of the mysterious interval? Quat Sci Rev 28:2557–2563CrossRefGoogle Scholar
  6. Chappellaz J, Stowasser C, Blunier T, Baslev-Clausen D, Brook EJ, Dallmayr R, Faïn X, Lee JE, Mitchell LE, Pascual O, Romanini D, Rosen J, Schüpbach S (2013) High-resolution glacial and deglacial record of atmospheric methane by continuous-flow and laser spectrometer analysis along the NEEM ice core. Clim Past 9:2579–2593CrossRefGoogle Scholar
  7. Chen ST, Wang YJ, Cheng H, Edwards RL, Wang XF, Kong XG, Liu DB (2016) Strong coupling of Asian monsoon and Antarctic climates on sub-orbital timescales. Sci Rep 6:32995. CrossRefGoogle Scholar
  8. Cheng H, Sinha A, Wang XF, Cruz FC, Edwards RL (2012) The global paleomonsoon as seen through speleothem records from Asia and the Americas. Clim Dyn. CrossRefGoogle Scholar
  9. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714CrossRefGoogle Scholar
  10. Clark PU, Shakun JD, Baker PA, Bartlein PJ, Brewer S, Brook E, Carlson AE, Cheng H, Kaufman DS, Liu ZY, Marchitto TM, Mix AC, Morrill C, Otto-Bliesner BL, Pahnke K, Russell JM, Whitlock C, Adkins JF, Blois JL, Clark J, Colman SM, Curry WB, Flower BP, He F, Johnson TC, Lynch-Stieglitz J, Markgraf V, McManus J, Mitrovica JX, Moerno PI, Williams JW (2012) Global climate evolution during the last deglaciation. Proc Natl Acad Sci USA 109:1134–1142CrossRefGoogle Scholar
  11. Denniston RF, Ummenhofer CC, Wanamaker AD Jr, Lachniet MS, Villarini G, Asmerom Y, Polyak VJ, Passaro KJ, Cugley J, Woods D, Humphreys WF (2016) Expansion and contraction of the Indo–Pacific tropical rain belt over the last three millennia. Sci Rep. CrossRefGoogle Scholar
  12. Denton GH, Alley RB, Comer GC, Broecker WS (2005) The role of seasonality in abrupt climate change. Quat Sci Rev 24:1159–1182CrossRefGoogle Scholar
  13. Deplazes G, Lückge A, Peterson LC, Timmermann A, Hamann Y, Hughen KA, Röhl U, Laj C, Cane MA, Sigman DM, Haug GH (2013) Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat Geosci 6:213–217CrossRefGoogle Scholar
  14. Dorale JA, Liu ZH (2009) Limitations of hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. J Cave Karst Stud 71:73–80Google Scholar
  15. Duan FC, Liu DB, Cheng H, Wang XF, Wang YJ, Kong XG, Chen ST (2014) A high-resolution monsoon record of millennial-scale oscillations during late MIS 3 from Wulu Cave, south–west China. J Quat Sci 29:83–90CrossRefGoogle Scholar
  16. Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F (2006) Modification and preservation of environmental signals in speleothems. Earth-Sci Rev 75:105–153CrossRefGoogle Scholar
  17. Hemming SR (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42(1):RG1005. CrossRefGoogle Scholar
  18. Hendy CH (1971) The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochim Cosmochim Acta 35:801–824CrossRefGoogle Scholar
  19. Hodell DA, Nicholl JA, Bontognali TRR, Danino S, Dorador J, Dowdeswell JA, Einsle J, Kuhlmann H, Martrat B, Mleneck-Vautravers MJ, Rodríguez-Tovar FJ, Röhl U (2017) Anatomy of Heinrich layer 1 and its role in the last deglaciation. Paleoceanography 32:284–303CrossRefGoogle Scholar
  20. IAEA/WMO (2011) Global network of isotopes in precipitation. The GNIP database. Accessed 20 Dec 2011
  21. Kindler P, Guillevic M, Baumgartner M, Schwander J, Landais A, Leuenberger M (2014) Temperature reconstruction from 10 to 120 kyr b2 k from the NGRIP ice core. Clim Past 10:887–902CrossRefGoogle Scholar
  22. Knorr G, Lohmann G (2003) Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Science 424:532–536Google Scholar
  23. Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28:412–423CrossRefGoogle Scholar
  24. Landais A, Masson-Delmotte V, Stenni B, Selmo E, Roche DM, Jouzel J, Lambert F, Guillevic M, Bazin L, Arzel O, Vinther B, Gkinis V, Popp T (2015) A review of the bipolar see-saw from synchronized and high resolution ice core water stable isotope records from Greenland and east Antarctica. Quat Sci Rev 114:18–32CrossRefGoogle Scholar
  25. Levermann A, Schewe J, Petoukhov V, Hermann H (2009) Basic mechanism for abrupt monsoon transitions. Proc Natl Acad Sci USA 106:20572–20577CrossRefGoogle Scholar
  26. Liu DB, Wang YJ, Cheng H, Edwards RL, Kong XG, Chen ST, Liu SS (2018) Contrasting patterns in abrupt Asian summer monsoon changes in the last glacial period and the Holocene. Paleoceanogr Palaeoclimatol 33:214–226CrossRefGoogle Scholar
  27. Marcott SA, Clark PU, Padman L, Klinkhammer GP, Springer SR, Liu ZY, Otto-Bliesner BL, Carlson AE, Ungerer A, Padman J, He F, Cheng J, Schmittner A (2011) Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc Natl Acad Sci USA 108:13415–13419CrossRefGoogle Scholar
  28. Markle BR, Steig EJ, Buizert C, Schoenemann SW, Bitz CM, Fudge TJ, Pedro JB, Ding QH, Jones TR, White JWC, Sowers T (2017) Global atmospheric teleconnections during Dansgaard–Oeschger events. Nat Geosci 10:36–40CrossRefGoogle Scholar
  29. Martrat B, Jimenez-Amat P, Zahn R, Grimalt JO (2014) Similarities and dissimilarities between the last two deglaciations and interglaciations in the North Atlantic region. Quat Sci Rev 99:122–134CrossRefGoogle Scholar
  30. McDermott F (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat Sci Rev 23:901–918CrossRefGoogle Scholar
  31. Oppo DW, Curry WB, McManus JF (2015) What do benthic δ13C and δ18O data tell us about Atlantic circulation during Heinrich Stadial 1? Paleoceanography 30:353–368CrossRefGoogle Scholar
  32. Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci 4:474–480CrossRefGoogle Scholar
  33. Praetorius SK, Mix AC (2014) Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345:444–448CrossRefGoogle Scholar
  34. Rasmussen SO, Seierstad IK, Andersen KK, Bigler M, Dahl-Jensen D, Johnsen SJ (2008) Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications. Quat Sci Rev 27:18–28CrossRefGoogle Scholar
  35. Rodríguez-Sanz L, Mortyn PG, Herguera JC, Zahn R (2013) Hydrographic changes in the tropcial and extrotropical Pacific during the last deglaciation. Paleoceanography 28:529–538CrossRefGoogle Scholar
  36. Samartin S, Heiri O, Lotter AF, Tinner W (2012) Climate warming and vegetation response after Heinrich event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps. Clim Past 8:1913–1927CrossRefGoogle Scholar
  37. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Pietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59CrossRefGoogle Scholar
  38. Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53CrossRefGoogle Scholar
  39. Shao QF, Pons-Branchu E, Zhu QP, Wang W, Valladas H, Fontugne M (2017) High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China. Quat Res 88:1–33CrossRefGoogle Scholar
  40. Siani G, Michel E, De Pol-Holz R, DeVries T, Lamy F, Carel M, Isguder G, Dewilde F, Lourantou A (2013) Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nat Commun 4:2758. CrossRefGoogle Scholar
  41. Stager JC, Ryves DB, Chase BM, Pausata FSR (2011) Catastrophic drought in the Afro–Asian monsoon region during Heinrich event 1. Science 331:1299–1302CrossRefGoogle Scholar
  42. Stríkis NM, Chiessi CM, Cruz FW, Vuille M, Cheng H, de Souza Barreto EA, Mollenhauer G, Kasten S, Karmann I, Edwards RL, Bernal JP, dos Reis Sales H (2015) Timing and structure of Mega-SACZ events during Heinrich Stadial 1. Geophys Res Lett. CrossRefGoogle Scholar
  43. Svensson A, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Davies SM, Johnsen SJ, Muscheler R, Parrenin F, Rasmussen SO, Röthlisberger R, Seierstad I, Steffensen JP, Vinther BM (2008) A 60 000 year Greenland stratigraphic ice core chronology. Clim Past 4:47–57CrossRefGoogle Scholar
  44. Toucanne S, Soulet G, Freslon N, Jacinto RS, Dennielou B, Zaragosi S, Eynaud F, Bourillet J-F, Bayon G (2015) Millennial-scale fluctuations of the European ice sheet at the end of the last glacial, and their potential impact on global climate. Quat Sci Rev 123:113–133CrossRefGoogle Scholar
  45. van Nes EH, Scheffer M (2007) Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am Nat 169:738–747CrossRefGoogle Scholar
  46. WAIS Divide Project Members (2013) Onset of deglacial warming in west Antarctica driven by local orbital forcing. Nature 500:440–444CrossRefGoogle Scholar
  47. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave. China Sci 294:2345–2348Google Scholar
  48. Weber ME, Clark PU, Kuhn G, Timmermann A, Sprenk D, Gladstone R, Zhang X, Lohmann G, Meniver L, Chikamoto MO, Friedrich T, Ohlwein C (2014) Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510:134–138CrossRefGoogle Scholar
  49. Xie RF, Marcantonio F, Schmidt MW (2012) Deglacial variability of Antarctic intermediate water penetration into the North Atlantic from authigenic neodymium isotope ratios. Paleoceanography 27:PA3221. CrossRefGoogle Scholar
  50. Zhang HB, Griffiths ML, Huang JH, Cai YJ, Wang CF, Zhang F, Cheng H, Ning YF, Hu CY, Xie SC (2016) Antarctic link with east Asian summer monsoon variability during the Heinrich Stadial-Bølling interstadial transition. Earth Planet Sci Lett 453:243–251CrossRefGoogle Scholar
  51. Zhao K, Wang YJ, Edwards RL, Cheng H, Liu DB (2010) High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition. Earth Planet Sci Lett 298:191–198CrossRefGoogle Scholar
  52. Zickfeld K, Knopf B, Petoukhov V, Schellnhuber HJ (2005) Is the Indian summer monsoon stable against global change? Geophys Res Lett 32:L15707. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yifan Fang
    • 1
  • Shushuang Liu
    • 1
  • Dianbing Liu
    • 1
    Email author
  • Linzhe Zou
    • 1
  1. 1.School of GeographyNanjing Normal UniversityNanjingChina

Personalised recommendations