Environmental Earth Sciences

, 78:541 | Cite as

Fungal richness in the extreme environments of the Libiola mine (eastern Liguria, Italy): correlations among microfungi, lithology, mineralogy, and contaminants

  • Grazia CecchiEmail author
  • Pietro Marescotti
  • Simone Di Piazza
  • Sandro Zappatore
  • Mirca Zotti
Original Article


A small sulphide-rich waste-rock dump from the derelict Libiola mine (eastern Liguria, Italy) was studied for evaluating the fungal richness as well as the correlation among microfungi and lithology, mineralogy, and contaminants. The waste-rock dump is characterized by severe environmental conditions in particular for the (1) high metal and sulphur contents, (2) presence of reactive sulphides (mainly pyrite) triggering acid mine drainage processes, (3) acid-to-strong acid pH values, and (4) high cementation grade of the sediments evolving up to hardpans. Despite these critical and dangerous environmental conditions, a total of 603 CFUs belonging to 30 filamentous fungal species were isolated. Correlations analyses underlined that serpentinite-rich samples resulted particularly poor of fungal richness, with respect to sulphide-mineralized basalts. Only some Penicillium species, in fact, resulted adapted to survive in serpentinitic samples. Finally, among the isolated species, Cladosporium cladosporioides, C. iridis, C. tenuissimum, Metarhizium anisopliae, Penicillium brevicompactum, P. expansum, and Phanerochaete sordida appeared particularly well adapted to the extreme edaphic conditions of the Libiola mine. These results allowed the selection of particularly adapted and tolerant fungal strains usable in biotechnological processes for bioremediation.


Sulphide mine Ecotoxic metals Fungi Biogeochemical interactions 



We are grateful to GeoSpectra s.r.l. for the FP-EDXRF analyses and data interpretation.


  1. Abbate E, Bortolotti V, Principi G (1980) Apennine ophiolites: a peculiar oceanic crust. Ofioliti 1:59–96Google Scholar
  2. Accornero M, Marini L, Ottonello G, Zuccolini MV (2005) The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola mine (Italy) are mixed with stream waters. Appl Geochem 20(7):1368–1390CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  4. Azarbad H, van Straalen NM, Laskowski R, Nikiel K, Röling WF, Niklińska M (2016) Susceptibility to additional stressors in metal-tolerant soil microbial communities from two pollution gradients. Appl Soil Ecol 98:233–242CrossRefGoogle Scholar
  5. Cánovas D, Cases I, De Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5(12):1242–1256CrossRefGoogle Scholar
  6. Cecchi G, Marescotti P, Di Piazza S, Zotti M (2017a) Native fungi as metal remediators: silver myco-accumulation from metal contaminated waste-rock dumps (Libiola Mine, Italy). J Environ Sci Health Part B 52(3):191–195CrossRefGoogle Scholar
  7. Cecchi G, Roccotiello E, Di Piazza S, Riggi A, Mariotti MG, Zotti M (2017b) Assessment of Ni accumulation capability by fungi for a possible approach to remove metals from soils and waters. J Environ Sci Health Part B 52(3):1–5Google Scholar
  8. Cecchi G, Ceci A, Marescotti P, Persiani AM, Di Piazza S, Ballirano P, Mariotti MG, Zotti M (2018a) The geological roles played by microfungi in interaction with sulphide minerals from Libiola Mine, Liguria, Italy. Geomic J 35(7):564–569CrossRefGoogle Scholar
  9. Cecchi G, Marescotti P, Di Piazza S, Lucchetti G, Mariotti MG, Zotti M (2018b) Gypsum biomineralization in sulphide-rich hardpans by a native trichoderma harzianum Rifai strain. Geomic J 35(3):209–214CrossRefGoogle Scholar
  10. Cecchi G, Ceci A, Marescotti P, Persiani AM, Di Piazza S, Zotti M (2019) Interactions among microfungi and pyrite-chalcopyrite mineralizations: tolerance, mineral bioleaching, and metal bioaccumulation. Mycol Prog 18(3):415–423CrossRefGoogle Scholar
  11. Das BK, Roy A, Koschorreck M, Mandal SM, Wendt-Potthoff K, Bhattacharya J (2009) Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43:883–894CrossRefGoogle Scholar
  12. Di Piazza S, Cecchi G, Cardinale AM, Carbone C, Mariotti MG, Giovine M, Zotti M (2017) Penicillium expansum link strain for a biometallurgical method to recover REEs from WEEE. Waste Manag 60:596–600CrossRefGoogle Scholar
  13. Dinelli E, Tateo F (2002) Different types of fine-grained sediments associated with acid mine drainage in the Libiola Fe–Cu mine area (Ligurian Apennines, Italy). Appl Geochem 17(8):1081–1092CrossRefGoogle Scholar
  14. Dinelli E, Lucchini F, Mordenti A, Paganelli L (1999) Geochemistry of Oligocene-Miocene sandstones of the northern Apennines (Italy) and evolution of chemical features in relation to provenance changes. Sed Geol 127(3):193–207CrossRefGoogle Scholar
  15. Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi, 2nd taxonomically revised edition by W. Gams. IHW, EchingGoogle Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochem Bull 19:11–15Google Scholar
  17. Fernández-Remolar DC, Prieto-Ballesteros O, Rodríguez N, Gómez F, Amils R, Gómez-Elvira J, Stoker CR (2008) Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars. Astrobiology 8(5):1023–1047CrossRefGoogle Scholar
  18. Folk RL (1954) The distinction between grain size and mineral composition in sedimentary rock nomenclature. J Geol 62:344–359CrossRefGoogle Scholar
  19. Folk RL (1974) Petrology of sedimentary rocks. Hemphill Publishing Co., Austin, p 182Google Scholar
  20. Gadanho M, Sampaio JP (2006) Microeukaryotic diversity in the extreme environments of the Iberian Pyrite Belt: a comparison between universal and fungi-specific primer sets, temperature gradient gel electrophoresis and cloning. FEMS Microbiol Ecol 57(1):139–148CrossRefGoogle Scholar
  21. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49CrossRefGoogle Scholar
  22. Gadd GM, Fomina M (2011) Uranium and fungi. Geomicrobiol J 28(5–6):471–482CrossRefGoogle Scholar
  23. Gams W, VAn der Aa HA, Plaats-Niterink AJ, Samson RA, Stalpers JA (1987) CBS course of mycology, vol 3. Centraalbureau voorschimmel cultures, UtrechtGoogle Scholar
  24. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118CrossRefGoogle Scholar
  25. Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F et al (2005) Sulphates in Martian layered terrains: the OMEGA/mars express view. Science 307(5715):1587–1591CrossRefGoogle Scholar
  26. Glass NL, Donaldson GC (1995) Development of primer sets designed for used with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4):1323–1330Google Scholar
  27. Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433(1–3):91–109CrossRefGoogle Scholar
  28. Harazono K, Kondo R, Sakai K (1996) Bleaching of Hardwood kraft pulp with manganese peroxidase from Phanerochaete sordida YK-624 without addition of MnSO (inf4). Appl Environ Microbiol 62(3):913–917Google Scholar
  29. Kang S, van Nostrand JD, Gough HL, He Z, Hazen TC, Stahl DA, Zhou J (2013) Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. FEMS Microbiol Ecol 86:200–214CrossRefGoogle Scholar
  30. Kubatova A, Prasil K, Vanova M (2002) Diversity of soil microscopic fungi on abandoned industrial deposits. Cryptogam Mycol 23(3):205–219Google Scholar
  31. Kumari D, Pan X, Achal V, Zhang D, Al-Misned FA, Mortuza MG (2015) Multiple metal-resistant bacteria and fungi from acidic copper mine tailings of Xinjiang, China. Environ Earth Sci 74:3113–3121CrossRefGoogle Scholar
  32. López-Archilla AI, González AE, Terrón MC, Amils R (2002) Ecological study of the fungal populations of the acidic Tinto river in south western Spain. Can J Microbiol 50(11):923–934CrossRefGoogle Scholar
  33. Marescotti P, Carbone C, De Capitani L, Grieco G, Lucchetti G, Servida D (2008) Mineralogical and geochemical characterization of open-air tailing and waste-rock dumps from the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy). Environ Geol 53(8):1613–1626CrossRefGoogle Scholar
  34. Marescotti P, Azzali E, Servida D, Carbone C, Grieco G, De Capitani L, Lucchetti G (2010) Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe–Cu sulphide mine (Eastern Liguria, Italy). Environ Earth Sci 61:187–199CrossRefGoogle Scholar
  35. Marescotti P, Roccotiello E, Zotti M, De Capitani L, Carbone C, Azzali E et al (2013) Influence of soil mineralogy and chemistry on fungi and plants in a waste-rock dump from the Libiola mine (eastern Liguria, Italy). Period Miner 82:141–162Google Scholar
  36. Massaccesi G, Romero MC, CazauMC Bucsinszky AM (2002) Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J Microbiol Biotechnol 18(9):817–820CrossRefGoogle Scholar
  37. Mertens J, Wakelin SA, Broos K, McLaughlin MJ, Smolders E (2010) Extent of copper tolerance and consequences for functional stability of the ammonia oxidizing community in long-term copper-contaminated soils. Environ Toxicol Chem 29:27–37CrossRefGoogle Scholar
  38. Oggerin M, Rodríguez N, del Moral C, Amils R (2014) Fungal jarosite biomineralization in Rio Tinto. Res Microbiol 165(9):719–725CrossRefGoogle Scholar
  39. Olson BH, Thornton I (1982) The resistance patterns to metals of bacterial population in contaminated land. J Soil Sci 33:271–277CrossRefGoogle Scholar
  40. Postma F, Mesjasz-Przybyłowicz J, Przybyłowicz W, Stone W, Mouton M, Botha A (2012) Symbiotic interactions of culturable microbes with the nickel hyperaccumulator Berkheya coddii and the herbivorous insect Chrysolina clathrata. Symbiosis 58(1–3):209–220CrossRefGoogle Scholar
  41. Ramírez C, Martínez AT (1981) Seven new species of Penicillium and a new variety of Penicillium novae-caledoniae Smith. Mycopathologia 74(1):35–49CrossRefGoogle Scholar
  42. Roccotiello E, Zotti M, Mesiti S, Marescotti P, Carbone C, Cornara L, Mariotti MG (2010) Biodiversity in metal-polluted soils. Fresenius Environ Bull 19(10b):2420–2425Google Scholar
  43. Roccotiello E, Marescotti P, Di Piazza S, Cecchi G, Mariotti MG, Zotti M (2015) Biodiversity in metal-contaminated sites–problem and perspective–a case study. Biodiversity in ecosystems-linking structure and function. InTech, GermanyGoogle Scholar
  44. Rosatto S, Roccotiello E, Di Piazza S, Cecchi G, Greco G, Zotti M, Vezzulli L, Mariotti M (2019) Rhizosphere response to nickel in a facultative hyperaccumulator. Chemosphere 232:243–253CrossRefGoogle Scholar
  45. Samson RA, Houbraken J, Rane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS laboratory manual series 2. CBS-KNAW Fungal Biodiversity Centre, Utrecht (ISBN: 978-90-70351-82-3) Google Scholar
  46. Say R, Yilmaz N, Denizli A (2003) Removal of chromium (VI) ions from synthetic solutions by the fungus Penicillium canescens. Ejmp ep 3(1):36–41 (European Journal of Mineral Processing and Environmental Protection) Google Scholar
  47. Squyres SW, Knoll AH, Arvidson RE, Clark BC, Grotzinger JP, Jolliff BL et al (2006) Two years at Meridiani Planum: results from the opportunity rover. Science 313(5792):1403–1407CrossRefGoogle Scholar
  48. Sunani G, Panda SS, Pattanayak B, Dhal NK (2015) Isolation, characterization and heavy metal tolerance capacity of indigenous fungi: a case study of iron mine waste. J Int Environ Appl Sci 10(2):233–238Google Scholar
  49. Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179CrossRefGoogle Scholar
  50. Wang J, Majima N, Hirai H, Kawagishi H (2012) Effective removal of endocrine-disrupting compounds by lignin peroxidase from the white-rot fungus Phanerochaete sordida YK-624. Curr Microbiol 64(3):300–303CrossRefGoogle Scholar
  51. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomial RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, vol 18. Academic Press, San Diego, pp 315–322Google Scholar
  52. Zotti M, Di Piazza S, Roccotiello E, Lucchetti G, Mariotti MG, Marescotti P (2014) Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: growth responses, tolerance and bioaccumulation. Chemosphere 117:471–476CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Mycology, Department of Earth, Environment and Life SciencesUniversity of GenoaGenoaItaly
  2. 2.Electrical, Electronics and Telecommunication Engineering and Naval Architecture DepartmentUniversity of GenoaGenoaItaly

Personalised recommendations