Advertisement

Environmental Earth Sciences

, 78:540 | Cite as

Naturally occurring asbestos in an alpine ophiolitic complex (northern Corsica, France)

  • Didier LahondèreEmail author
  • Florence Cagnard
  • Guillaume Wille
  • Jéromine Duron
Original Article
  • 47 Downloads

Abstract

This paper provides a field description and an analytical characterization of the fibrous minerals associated with ultrabasic and basic rocks from the Corsican Ophiolitic Complex, on the island of Corsica, in order to examine their asbestos potential. Thirty-five fibrous samples taken from serpentinites, magnesium-rich meta-gabbros and meta-basalts were studied, using combined EPMA, Ramanand FESEM methods. The results highlight that naturally occurring asbestos (NOA) are abundant in serpentinites and regularly occur in magnesium-rich meta-gabbros and meta-basalts in northern Corsica. The spatial distribution, abundance and mineralogical types of these NOA strongly depend on the petrographic nature of the hosting rocks and their structural pattern. NOA in serpentinites correspond to chrysotile vein networks in the internal parts of the thickest rocky masses and to tremolite veins and shear planes carrying tremolite fibers, both in the external parts of these masses and in highly sheared serpentinites within or close to tectonic contacts. NOA in highly deformed magnesium-rich meta-gabbros are associated with the opening and filling of albite–tremolite veins, associated with the syntectonic boudinage of the most competent meta-gabbros. In the meta-basalts, NOA are associated with late metamorphic, actinolite-bearing polymineralic veins cross-cutting the foliation planes. Fragments and pebbles of serpentinites, meta-gabbros and meta-basalts containing NOA are also present in colluvium, scree and alluvium resulting from erosion processes. Special attention should be paid to serpentinites and/or magnesium-rich meta-gabbros-bearing colluvium in which fibrous occurrences of tremolite regularly evolved into whitish clusters consisting of very long, easily separable, flexible and entangled fibers with a higher asbestos potential. The characterization of NOA in the COC serpentinites, meta-gabbros and meta-basalts leads us to consider them as hazardous materials. As these lithologies are very abundant within the whole structural edifice, they may be regularly impacted by development or construction work and thus require suitable monitoring.

Keywords

Ophiolite Actinolite Tremolite Chrysotile Asbestos Vein Northern Corsica France 

Notes

Acknowledgements

The authors gratefully acknowledge the Directorate-General for Risk Prevention of the French Ministry of Ecological and Solidarity Transition, the BRGM and the Corsican Environmental Office for discussions and for their financial support. We thank Bradley Van Gosen for constructive comments that have been helpful to clarify and improve this manuscript.

References

  1. ANSES (2015) Effets sanitaires et identification des fragments de clivage d’amphiboles issus des matériaux de carrière. Rapport d’expertise collective, France, p 197Google Scholar
  2. AS (Australian Standard) (2004) AS 4964-2004. Method for the qualitative identification of asbestos in bulk samples. p 28Google Scholar
  3. Auzende A (2003) Évolution des microstructures des serpentinites en contexte convergent: effet du degré de métamorphisme et de la déformation. PhD thesis, Université Joseph Fourier, Grenoble, 264 pGoogle Scholar
  4. Auzende A, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Miner 31(5):269–277CrossRefGoogle Scholar
  5. Boutin G, Viallat JR, Steinbauer J, Dufour G, Gaudichet A (1989) Bilateral pleural plaques in Corsica: a marker of non-occupational asbestos exposure. In: Bignon J, Peto J, Saracci R (eds) Non occupational exposure to mineral fibers. IARC, Lyon, pp 406–410Google Scholar
  6. Campopiano A, Olori A, Spadafora A, Bruno MR, Angelosanto F, Ianno A, Casciardi S, Giardino R, Conte M, Oranges T, Iavicoli S (2018) Asbestiform minerals in ophiolitic rocks of Calabria (southern Italy). Int J Environ Health Res 28:134–146CrossRefGoogle Scholar
  7. Cogulu E, Laurent R (1984) Mineralogical and chemical variations in chrysotile veins and peridotite host-rocks from the asbestos belt of southern Quebec. Can Miner 22:173–183Google Scholar
  8. EPA (Environmental Protection Agency) (1993). Test method: method for determination of asbestos in bulk building materials. EPA/600/R-93/116, p 61Google Scholar
  9. EPC (European Parliament and Council) (2009) Directive 2009/148/CE du Parlement européen et du Conseil concernant la protection des travailleurs contre les risques liés à une exposition à l’amiante pendant le travail. Journal officiel de l’Union européenne 330:28–36Google Scholar
  10. Erskine BG, Bailey M (2018) Characterization of asbestiform glaucophane-winchite in the Franciscan complex blueschist, northern Diablo Range, California. Toxicol Appl Pharmacol 361:3–13CrossRefGoogle Scholar
  11. Fitzgerald JD, Eggleton RA, Keeling JL (2010) Antigorite from Rowland Flat, south Australia: asbestiform character. Eur J Miner 22:525–533CrossRefGoogle Scholar
  12. Gaggero L, Crispini L, Isola E, Marescotti P (2013) Asbestos in natural and anthropic ophiolitic environments: a case study of geohazards related to the northern Apennine ophiolites (eastern Liguria, Italy). Ofioliti 38(1):29–40Google Scholar
  13. Gibbs GW, Hwang CY (1980) Dimensions of airborne asbestos fibers. In: Wagner JC (ed) Biological effects of mineral fibers. IARC Scientific Publication, Lyon, pp 69–78Google Scholar
  14. Glen RA, Butt BC (1981) Chrysotile asbestos at Woodsreef, New South Wales. Econ Geol 76:1153–1169CrossRefGoogle Scholar
  15. Groppo C, Compagnoni R (2007a) Metamorphic veins from serpentinites of the Piemonte Zone, western Alps, Italy: a review. Periodico di Mineralogia 76:127–153Google Scholar
  16. Groppo C, Compagnoni R (2007b) Ubiquitous fibrous antigorite veins from the Lanzo Ultramafic Massif, internal Western Alps (Italy): characterization and genetic conditions. Periodico di Mineralogia 76:169–181Google Scholar
  17. Groppo C, Rinaudo C, Cairo S, Gastaldi D, Compagnoni R (2006) Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur J Miner 18:319–329CrossRefGoogle Scholar
  18. Gunter ME, Darby-Diar M, Lanzirotti A, Tucker JM, Speicher EA (2011) Differences in Fe-redox for asbestiform and nonasbestiform amphiboles from the former vermiculite mine, near Libby, Montana, USA (2011). Am Miner 96:1414–1417CrossRefGoogle Scholar
  19. Harper M, Gyung Lee E, Doorn SS, Hammond O (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics. J Occup Environ Hyg 5:761–770CrossRefGoogle Scholar
  20. Harris L (1985) Progressive and polyphase deformation of the Schistes Lustrés in Cap Corse, Alpine Corsica. J Struct Geol 7(6):637–650CrossRefGoogle Scholar
  21. Harris KE, Bunker KL, Strohmeier BR, Hoch R, Lee RJ (2007) Discovering the true morphology of amphibole minerals: complementary TEM and FESEM characterization of particles in mixes mineral dust. In: Mendez-Vilas A, Diaz J (eds) Modern research and educational topics in microscopy., pp 643–650Google Scholar
  22. Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Miner 97:2031–2048CrossRefGoogle Scholar
  23. HSE (Health and Safety Executive) (2006) Asbestos: the analysts’ guide for sampling, analysis and clearance procedures, p 100Google Scholar
  24. IARC (1987) Monographs on the evaluation of the carcinogenic risk to humans. Overall evaluations of carcinogenicity: an updating of IARC monographs, vol 1–42, suppl 7. WHO-IARC, France, pp 106–116Google Scholar
  25. IARC (2012). Monographs on the evaluation of the carcinogenic risk to humans. Arsenic, metals, fibres, and dusts. IARC monographs, vol 100. World Health Organization, pp 11–465Google Scholar
  26. INSERM (1999). Effets sur la santé des fibres de substitution à l’amiante’ (expertise collective). Rapport établi à la demande de la Direction Générale de la Santé et de la Direction des Relations du Travail (Ministère de l’Emploi et de la solidarité), p 429Google Scholar
  27. Karkanas P (1995) The slip-fiber chrysotile asbestos deposit in the Zidani area, northern Greece. Ore Geol Rev 1:19–29CrossRefGoogle Scholar
  28. Kazan-Allen L (2005) Asbestos and mesothelioma: worldwide trends. Lung Cancer 49(S1):S3–S8CrossRefGoogle Scholar
  29. Lagabrielle Y, Vitale Brovarone A, Ildefonse B (2015) Fossil oceanic core complexes recognized in the blueschist metaophiolites of Western Alps and Corsica. Earth Sci Rev 141:1–26CrossRefGoogle Scholar
  30. Lahondère D (1996) Les schistes bleus et les éclogites à lawsonite des unités continentales et océaniques de la Corse alpine. Nouvelles données pétrologiques et structurales, thèse, Doc. BRGM no 240, Université de Montpellier, p 285Google Scholar
  31. Lahondère J-C, Lahondère D (1988) Organisation structurale des « schistes lustrés » du cap Corse (Haute-Corse). C R Acad Sci 307:1081–1086Google Scholar
  32. Lahondère D, Cagnard F, Wille G, Duron J, Misseri M (2018a) TEM and FESEM characterization of asbestiform and non-asbestiform actinolite fibers in hydrothermally altered dolerites (France). Environ Earth Sci 77:385CrossRefGoogle Scholar
  33. Lahondère et al (2018b) Naturally occurring asbestos in an alpine ophiolitic complex (N. Corsica, France). IAEG congress, San FranciscoGoogle Scholar
  34. Langer AM (2008) Identification and enumeration of asbestos fibers in the mining environment: mission and modification to the Federal Asbestos Standard. Regul Toxicol Pharmacol 52:207–217CrossRefGoogle Scholar
  35. Langer AM, Nolan RP, Addison J (1991) Distinguishing between amphibole asbestos fibers and elongate cleavage fragments of their non-asbestos analogues. Mechanisms in fibre carcinogenesis. Plenum Press, New York, pp 253–267CrossRefGoogle Scholar
  36. Lee RJ, Strohmeier BR, Bunker KL, Van Orden DR (2008) Naturally occurring asbestos—a recurring public policy challenge. J Hazard Mater 153:1–21CrossRefGoogle Scholar
  37. Li XH, Faure M, Rossi P, Lin W, Lahondère D (2015) Age of alpine Corsica ophiolites revisited: insights from in situ zircon U–Pb age and O–Hf isotopes. Lithos 220–223:179–190CrossRefGoogle Scholar
  38. Locock AJ (2014) An excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommandations. Comput Geosci 62:1–11CrossRefGoogle Scholar
  39. Malavieille J, Chemenda A, Larroque C (1998) Evolutionary model for Alpine Corsica: mechanism for ophiolite emplacement and exhumation of high-pressure rocks. Terra Nova 10:317–322CrossRefGoogle Scholar
  40. Mattauer M, Faure M, Malavieille J (1981) Transverse lineation and large-scale structures related to Alpine obduction in Corsica. J Struct Geol 3:401–409CrossRefGoogle Scholar
  41. Meresse F, Lagabrielle Y, Malavieille J, Ildefonse B (2012) A fossil ocean-continent transition of the Mesozoic Tethys preserved in the Schistes Lustrés nappe of northern Corsica. Tectonophysics 579:4–16.  https://doi.org/10.1016/j.tecto.2012.06.013 CrossRefGoogle Scholar
  42. Merlet C (1992) Quantitative electron probe microanalysis: a new accurate (φρz) description. Mikrochimica Acta 12:107–115CrossRefGoogle Scholar
  43. Metcalf RV, Buck BJ (2015) Genesis and health risk implications of an unusual occurrence of fibrous NaFe3 + − amphibole. Geology 43:63–66CrossRefGoogle Scholar
  44. Miller JA, Cartwright I (2006) Albite vein formation during exhumation of high-pressure terranes: a case study from alpine Corsica. J Metamorph Geol 24:409–428CrossRefGoogle Scholar
  45. Molli G, Tribuzio R, Marquer D (2006) Deformation and metamorphism at the eastern border of the Tenda Massif (NE Corsica): a record of subduction and exhumation of continental crust. J Struct Geol 28:1748–1766CrossRefGoogle Scholar
  46. NIOSH (National Institute for Occupational Safety and Health) (2011) Asbestos fibers and other elongate mineral particles: state of the science and roadmap for research. Current Intelligence Bulletin 62, pp 1–153Google Scholar
  47. NIST (National Institute for Standards and Technology) (2006) Bulk asbestos analysis. NIST Handbook. NIST, Gaithersburg, pp 150–153Google Scholar
  48. Norrell GT, Teixell AG, Harper D (1989) Microstructure of serpentinite mylonites from the josephine ophiolite and serpentinization in retrogressive shear zones, California. Geol Soc Am Bull 101:673–682CrossRefGoogle Scholar
  49. Ohnenstetter D, Ohnenstetter M (1975) Le puzzle ophiolitique corse, un bel exemple de paléodorsale océanique. Thèse 3ème cycle, NancyGoogle Scholar
  50. Page NJ (1968) Serpentinization in a sheared serpentine lens, Tiburon Peninsula, California. US Geol Surv Prof 600:B21–B28Google Scholar
  51. Petriglieri JR, Salvioli-Mariani E, Mantovani L, Tribaudino M, Lottici PP, Laporte-Magoni C, Bersani D (2015) Micro-Raman mapping of the polymorphs of serpentine. J Raman Spectrosc 46:953–958.  https://doi.org/10.1002/jrs.4695 CrossRefGoogle Scholar
  52. Pooley FD, Clark NJ (1980) A comparison of fibre dimensions in chrysotile, crocidolite and amosite particles from samples of airborne dust and from post-mortem lung tissue specimens. In: Wagner W, Davis JC (eds) Biologic effects of mineral fibers. IARC Sci Pub Number 30, France, pp 79–86Google Scholar
  53. Puffer JH, Germine M, Hurtubise DO, Mrotek KA, Bello DM (1980) Asbestos distribution in the central serpentine district of Maryland–Pennsylvania. Environ Res 23:233–246CrossRefGoogle Scholar
  54. Rampone E, Piccardo GB (2008) Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contrib Miner Petrol 156:453–475CrossRefGoogle Scholar
  55. Ravna EJK, Andersen TB, Jolivet L, De Capitani C (2010) Cold subduction and the formation of lawsonite eclogite–constraints from prograde evolution of eclogitized pillow lava from Corsica. J Metamorph Geol 28:381–395CrossRefGoogle Scholar
  56. Rey F, Viallat JR, Boutin C, Farisse P, Billon-Galland MA, Hereng P, Dumortier P, De Vuysts P (1993) Les mésothéliomes environnementaux en Corse du Nord-Est. Rev Mal Resp 10:339–345Google Scholar
  57. Rey F, Boutin C, Viallat JR, Steinbauer J, Alessandroni P, Jutisz P, Di Giambattista D, Billon-Galland MA, Hereng P, Dumortier P, De Vuyst P (1994) Environmental asbestotic pleural plaques in Northeast Corsica: correlations with airborne and pleural mineralogic analysis. Environ Health Perspect 102:251–252CrossRefGoogle Scholar
  58. Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can Miner 41:883–890CrossRefGoogle Scholar
  59. Riordon PH (1955) The genesis of asbestos in ultrabasic rocks. Econ Geol 50:67–83CrossRefGoogle Scholar
  60. Ross M, Langer AM, Nord GL, Nolan RP, Lee RJ, Van Orden D, Addison J (2008) The mineral nature of asbestos. Regul Toxicol Pharmacol 52:26–30CrossRefGoogle Scholar
  61. Rossi P, Lahondère JC, Lluch D, Loÿe-Pilot MD (1994) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Florent (1103). BRGM, Orléans, p 93Google Scholar
  62. Turco E, Macchiavelli C, Mazzoli S, Schettino A, Pierantoni PP (2012) Kinematic evolution of Alpine Corsica in the framework of Mediterranean mountain belts. Tectonophysics 579:193–206CrossRefGoogle Scholar
  63. Van Gosen BS (2007) The geology of asbestos in the United States and its practical applications. Environ Eng Geosci 13:55–68CrossRefGoogle Scholar
  64. Van Gosen BS, Lowers HA, Sutley SJ, Gent CA (2004) Using the geologic setting of talc deposits as an indicator of amphibole asbestos content. Environ Geol 45:920–939CrossRefGoogle Scholar
  65. Van Orden DR, Allison KA, Lee RJ (2008) Differentiating amphibole asbestos from non-asbestos in a complex mineral environment. Indoor Built Environ 17:58–68CrossRefGoogle Scholar
  66. Van Orden DR, Lee RJ, Allison KA, Addison J (2009) Width distributions of asbestos and non-asbestos amphibole minerals. Indoor Built Environ 18:531–540CrossRefGoogle Scholar
  67. Van Orden DR, Lee RJ, Hefferan CM, Schlaegle S, Sanchez M (2016) Determination of the size distribution of amphibole asbestos and amphibole non-asbestos mineral particles. Microscope 64(1):13–25Google Scholar
  68. Vignaroli G, Ballirano P, Belardi G, Rossetti F (2014) Asbestos fibre identification vs. evaluation of asbestos hazard in ophiolitic rocks melanges, a case study from the Ligurian Alps (Italy). Environ Earth Sci 72:3679–3698CrossRefGoogle Scholar
  69. Virta RL, Shedd K, Wylie AG, Snyder JG (1983) Size and shape characteristics of amphibole asbestos (amosite) and amphibole cleavage fragments (actinolite, cummingtonite) collected on occupational air monitoring filters. Aerosols Min Ind Work Environ 2:633–643Google Scholar
  70. Vitale-Brovarone A, Beyssac O, Malavieille J, Molli G, Beltrando M, Compagnoni R (2013) Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: the example of alpine Corsica. Earth Sci Rev 116:35–56CrossRefGoogle Scholar
  71. Viti C, Mellini M (1996) Vein antigorite from Elba Island, Italy. Eur J Miner 8:423–434CrossRefGoogle Scholar
  72. Vortisch W, Bauch X (2018) Asbestiform antigorite: a dangerous mineral in Serpentinites. A plea to treat asbestiform antigorite as an asbestos group mineral in terms of its occupational health safety effects. Neues Jahrbuch für Mineralogie–Abhandlungen. J Min Geochem 195(1):41–64.  https://doi.org/10.1127/njma/2017/0070 CrossRefGoogle Scholar
  73. World Health Organization (1986) Asbestos and other natural mineral fibres, environmental health criteria, no. 53, GenevaGoogle Scholar
  74. World Health Organization (1998) Détermination de la concentration des fibres en suspension dans l’air. Méthode recommandée: la microscopie optique en contraste de phase (comptage sur membrane filtrante)Google Scholar
  75. Wylie AG (1990) Discriminating amphibole cleavage fragments from asbestos: rationale and methodology. In: Proc VII, Pneumoconiosis Conf., Pittsburg, Pennsylvania, pp 1065–1069Google Scholar
  76. Wylie AG, Huggins CW (1980) Characteristics of a potassian winchite-asbestos from the Allamoore talc district, Texas. Can Miner 18:101–107Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Didier Lahondère
    • 1
    Email author
  • Florence Cagnard
    • 1
  • Guillaume Wille
    • 1
  • Jéromine Duron
    • 1
  1. 1.B.R.G.M.Orléans Cedex 2France

Personalised recommendations