Links between karst hydrogeological properties and statistical characteristics of spring discharge time series: a theoretical study

  • Adeline DufoyerEmail author
  • Nicolas Massei
  • Nicolas Lecoq
  • Jean-Christophe Marechal
  • Dominique Thiery
  • Didier Pennequin
  • Pierre-Yann David
Thematic Issue
Part of the following topical collections:
  1. Characterization, Modeling, and Remediation of Karst in a Changing Environment


Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the spring discharge at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis applied to spring discharge, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. The main objective of this work is to provide additional insights of to what extent the informative content of the hydrodynamic signal at karst springs is sensitive to karst aquifers internal physical properties. To address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models and on synthetic systems responses. The link between karst hydraulic and physical properties was studied. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical characteristics of flow at the outlet are sensitive to changes (1) one hydraulic parameter of the model and (2) in conduit network geometry. The matrix/conduit exchange parameter appeared clearly as a determinant model parameter in the spring discharge simulation. The auto- and cross-correlation functions seem to be of particular interest for the understanding of the karst inner physics. Indeed, these functions are always different, despite not so pronounced configuration differences. This would highlight that there is an informative content within the spring discharge time series and the usefulness of such analysis methods.


Autocorrelation Cross correlation Simulated spring discharge Synthetic karst aquifer 



  1. Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–110CrossRefGoogle Scholar
  2. Bailly-Comte V, Martin JB, Screaton EJ (2011) Time variant cross-correlation to assess residence time of water and implication for hydraulics of a sink-rise karst system. Water Resour Res 47:W05547CrossRefGoogle Scholar
  3. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160CrossRefGoogle Scholar
  4. Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math Mech 24:1286–1303CrossRefGoogle Scholar
  5. Baudement C, Arfib B, Mazzilli N, Jouves J, Lamarque T, Guglielmi Y (2017) Assessing floods and groundwater management of a highly dynamic karst with a reservoir model (Dardennes springs, SE France), BSGF. Earth Sci Bull 188:40CrossRefGoogle Scholar
  6. Bauer S, Liedl R, Sauter M (2003) Modeling of karst aquifer genesis: influence of exchange flo. Water Resour Res 39(10):1285. CrossRefGoogle Scholar
  7. Eisenlohr L, Király L, Bouzelboudjen M, Rossier I (1997) Numerical simulation as a tool for checking the interpretation of karst springs hydrographs. J Hydrol 193:306–315CrossRefGoogle Scholar
  8. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterCrossRefGoogle Scholar
  9. Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol J 20(8):1441–1461CrossRefGoogle Scholar
  10. Hauns M, Jeannin PY, Atteia O (2001) Dispersion, retardation and scale effect in tracer breakthrough curves in karst conduits. J Hydrol 241:177–193CrossRefGoogle Scholar
  11. Jourde H, Mazzilli N, Lecoq N, Arfib B, Bertin D (2015) KARSTMOD: a generic modular reservoir model dedicated to spring discharge modeling and hydrodynamic analysis in karst. In: Andreo B, Carrasco F, Durán J, Jiménez P, LaMoreaux J (eds) Hydrogeological and environmental investigations in karst systems Environmental earth sciences, vol 1. Springer, Berlin, HeidelbergGoogle Scholar
  12. Jukić D, Denić-Jukić V (2009) Groundwater balance estimation in karst by using a conceptual rainfall–runoff model. J Hydrol 373(3–4):302–315CrossRefGoogle Scholar
  13. Kiraly L (1998) Modeling karst aquifers by the combined discrete channel and continuum approach. Bull Hydrogeol 16:77–98Google Scholar
  14. Kordilla J, Sauter M, Reimann T, Geyer T (2012) Simulation of saturated and unsaturated flow in karst systems at catchment scale using a double continuum approach. Hydrol Earth Syst Sci 16:3909–3923. CrossRefGoogle Scholar
  15. Labat D, Ababou R, Mangin A (2000a) Rainfall-runoff relations for karstic springs. Part I: convolution and spectral analyses. J Hydrol 238(3–4):123–148CrossRefGoogle Scholar
  16. Labat D, Ababou R, Mangin A (2000b) Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. J Hydrol 238(3–4):149–178CrossRefGoogle Scholar
  17. Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205:217–231CrossRefGoogle Scholar
  18. Lei S (1999) An analytical solution for steady state flow into a tunnel. Ground Water 37:23–26CrossRefGoogle Scholar
  19. Lepiller M, Mondain PH (1986) Les traçages artificiels en hydrogéologie karstique. Hydrogéologie (BRGM) 1:33–52Google Scholar
  20. Long AJ, Putnam LD (2004) Linear model describing three components of flow in karst aquifers using 18O data. J Hydrol 296(1–4):254–270CrossRefGoogle Scholar
  21. Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques [Contribution to the hydrodynamic study of karst aquifers]. PhD Thesis, Institut des Sciences de la Terre de l’Université de DijonGoogle Scholar
  22. Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoires et spectrales. J Hydrol 67:25–43CrossRefGoogle Scholar
  23. Massei N, Dupont JP, Mahler BJ, Laignel B, Fournier M, Valdes D, Ogier S (2006) Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J Hydrol 329:244–257CrossRefGoogle Scholar
  24. Mathevet T, Lepiller M, Mangin A (2004) Application of time-series analyses to the hydrological functioning of an Alpine karstic system: the case of Bange-L’Eau-Morte. Hydrol Earth Syst Sci 8(6):1051–1064CrossRefGoogle Scholar
  25. Mayaud C, Wagner T, Benischke R, Birk S (2014) Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). J Hydrol 511:628–639CrossRefGoogle Scholar
  26. Mazzilli N, Guinot V, Jourde H, Lecoq N, Labat D et al (2018) KarstMod: a modelling platform for rainfall—discharge analysis and modelling dedicated to karst systems. Environ Model Softw. CrossRefGoogle Scholar
  27. Morales T, Fdez de Valderrama I, Uriarte J et al (2007) Predicting travel times and transport characterization in karst conduits by analyzing tracer-breakthrough curves. J Hydrol 334:183–198CrossRefGoogle Scholar
  28. Narasimhan TN (1982) Multidimensional numerical simulation of fluid flow in fractured porous media. Water Resour Res 18:1235–1247CrossRefGoogle Scholar
  29. Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168(1–4):73–89CrossRefGoogle Scholar
  30. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21CrossRefGoogle Scholar
  31. Panagopoulos G, Lambrakis N (2006) The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: application on two typical karst aquifers of Greece (Trifilia, Almyros Crete). J Hydrol 329:368–376CrossRefGoogle Scholar
  32. Pinault JL (2001) Manuel utilisateur de TEMPO : Logiciel de traitement et de modélisation des series temporelles en hydrogéologie et en hydrogéochimie. Projet Modhydro. BRGM Report RP51459-FRGoogle Scholar
  33. Ronayne MJ (2013) Influence of conduit network geometry on solute transport in karst aquifers with a permeable matrix. Adv Water Resour 56:27–34CrossRefGoogle Scholar
  34. Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, Malm, SW Germany), Tübinger Geowiss. Arb. C13, 150 pp., Univ. of Tübingen, Tübingen, GermanyGoogle Scholar
  35. Sauter M, Kovacs A, Geyer T, Teutsch G (2006) Modellierung der hydraulik von karst grundwasserleiter: eine übersicht [Modeling of the hydraulics of karst aquifers: an overview]. Grundwasser 11(3):143–156CrossRefGoogle Scholar
  36. Teutsch G (1993) An extended double-porosity concept as a practical modeling approach for a karstified terrain. Hydrogeological Processes in Karst Terranes (Proceedings of the Antalya Symposium and Field Seminar, October 1990), IAHS, Wallingford, UK, pp 281–292Google Scholar
  37. Thiéry D (2014) Logiciel GARDENIA, version 8.2. Guide d’utilisation. Rapport BRGM/RP-62797-FR, 126 p., 65 fig., 2 annGoogle Scholar
  38. Thiéry D (2015) Code de calcul MARTHE—Modélisation 3D des écoulements dans les hydrosystèmes—Notice d’utilisation de la version 7,5. Rapport BRGM/RP-64554-FR, 306p., 150 figGoogle Scholar
  39. Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Pet Eng J 3:245–255CrossRefGoogle Scholar
  40. Worthington S, Smart C (2003) Empirical determination of tracer mass for sink to spring tests in karst. Sink Eng Environ Impacts Karst 122:287–298CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2CRouenFrance
  2. 2.Bureau de Recherches Géologiques et Minières, BRGMOrléansFrance

Personalised recommendations