Advertisement

Surface deformation monitoring of Shanghai based on ENVISAT ASAR and Sentinel-1A data

  • Guohui Yao
  • Chang-Qing KeEmail author
  • Jinhua Zhang
  • Yanyan Lu
  • Jiaman Zhao
  • Hoonyol Lee
Original Article
  • 87 Downloads

Abstract

During urbanization, different dimensions of the expansion of construction land causes different degrees of surface deformation. Based on the C-band ENVISAT ASAR data (December 2004 to September 2010) and Sentinel-1A data (March 2015 to April 2017), the small baseline subset interferometric synthetic aperture radar (SBAS InSAR) method was used to monitor the spatial and temporal variations of surface deformation in Shanghai, China. The results showed that widespread uneven subsidence occurred in Shanghai from December 2004 to April 2017. A transition from urban areas toward the suburbs appeared in the spatial distribution, in which the cumulative deformation in the urban areas has the characteristics of seasonal fluctuation, which shows the alternation of subsidence and rebound. In addition, the deformation characteristics of different types of construction land with the same geological conditions were compared, which showed that residential land had the least cumulative subsidence and clear seasonal fluctuations, industrial land had the greatest cumulative subsidence, and transportation land had greater subsidence during the construction period but tended to become stable after being put into use. This suggests that the deformation characteristics of Shanghai are changing, and the type of construction land is also an important factor in the deformation process.

Keywords

Land surface deformation Spatial and temporal variations Types of construction land SBAS InSAR Shanghai 

Notes

Acknowledgements

This work is supported financially by National Natural Science Foundation of China (No. 41830105) and also funded by the International Scholar Exchange Fellowship (ISEF) program at KFAS ( Korean Foundation of Advanced Studies). SAR data of Envisat ASAR and Sentinel-1A are courtesy of the European Space Agency (ESA). Thanks to Shanghai Institute of Geological Survey for providing level measurement data.

References

  1. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote 40(11):2375–2383.  https://doi.org/10.1109/TGRS.2002.803792 CrossRefGoogle Scholar
  2. Cabral-Cano E, Dixon TH, Miralles-Wilhelm F, Diaz-Zlina O, Sanchez-Zamora O, Carande RE (2008) Space geodetic imaging of rapid ground subsidence in Mexico City. Geol Soc Am Bull 120(11–12):1556–1566.  https://doi.org/10.1130/B26001.1 CrossRefGoogle Scholar
  3. Chen BB, Gong HL, li XJ, lei KC, Zhao YQ, Li JW, Gu ZQ, Dang YA (2011) Spatial-temporal characteristics of land subsidence corresponding to dynamic groundwater funnel in Beijing Municipality, China. Chin Geogr Sci 21(6):753–764.  https://doi.org/10.1007/s11769-011-0509-6 CrossRefGoogle Scholar
  4. Chen J, Wu JC, Zhang LN, Zou JP, Liu GX, Zhang R, Yu B (2013) Deformation trend extraction based on multi-temporal InSAR in Shanghai. Remote Sens 5(4):1774–1786.  https://doi.org/10.3390/rs5041774 CrossRefGoogle Scholar
  5. Cigna F, Osmanoğlu B, Cabral-Cano E, Dixon TH, Ávila-Olivera JA, Garduño-Monroy VH, DeMets C, Wdowinski S (2012) Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: a case study in Morelia, Mexico. Remote Sens Environ 117(1):146–161.  https://doi.org/10.1016/j.rse.2011.09.005 CrossRefGoogle Scholar
  6. Compilation committee of Shanghai geological environment atlas (2002) Shanghai geological environmental atlas. Geological Publishing House, ShanghaiGoogle Scholar
  7. Dang VK, Doubre C, Weber C, Gourmelen N, Masson F (2014) Recent land subsidence caused by the rapid urban development in the Hanoi urban region (Vietnam) using ALOS InSAR data. Nat Hazard Earth Sys 14(3):657–674.  https://doi.org/10.5194/nhess-14-657-2014 CrossRefGoogle Scholar
  8. Dong SC, Samsonov S, Yin HW, Ye SJ, Cao YR (2014) Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ Earth Sci 72(3):677–691.  https://doi.org/10.1007/s12665-013-2990-y CrossRefGoogle Scholar
  9. Fruneau B, Sarti F (2000) Detection of ground subsidence in the city of Paris using radar interferometry: Isolation of deformation from atmospheric artifacts using correlation. Geophys Res Lett 27(24):3981–3984.  https://doi.org/10.1029/2000GL008489 CrossRefGoogle Scholar
  10. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: Differential radar interferometry. J Geophys Res Solid Earth 94(B7):9183–9191.  https://doi.org/10.1029/JB094iB07p09183 CrossRefGoogle Scholar
  11. Gatelli F, Guamieri AM, Parizzi F, Pasquali P, Prati C, Rocca F (1994) The Wave number Shift in SAR Interferometry. IEEE Trans Geosci Remote 32(4):855–865.  https://doi.org/10.1109/36.298013 CrossRefGoogle Scholar
  12. Ge DQ, Zhang L, Wang Y, Li M, Liu B (2014) Monitoring subsidence on Shanghai Metro line 10 during construction and operation using high-resolution InSAR. Shanghai Land Resour (4): 62–67.  https://doi.org/10.3969/j.issn.2095-1329.2014.04.014 (in Chinese)
  13. Gheorghe M, Armaş I (2016) Comparison of multi-temporal differential interferometry techniques applied to the measurement of Bucharest City Subsidence. Proc Environ Sci 32:221–229.  https://doi.org/10.1016/j.proenv.2016.03.027 CrossRefGoogle Scholar
  14. Guzzetti F, Manunta M, Ardizzone F, Pepe A, Cardinali M, Zeni G, Reichenbach P, Lanari R (2009) Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Italy. Pure Appl Geophys 166(8–9):1425–1459.  https://doi.org/10.1007/s00024-009-0491-4 CrossRefGoogle Scholar
  15. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35(16):96–106.  https://doi.org/10.1029/2008GL034654 CrossRefGoogle Scholar
  16. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23):1–5.  https://doi.org/10.1029/2004GL021737 CrossRefGoogle Scholar
  17. Jo MJ, Won JS, Kim SW, Jung HS (2010) A time-series SAR observation of surface deformation at the southern end of the San Andreas Fault Zone. Geosci J 14(3):277–287.  https://doi.org/10.1007/s12303-010-0028-y CrossRefGoogle Scholar
  18. Lauknes TR, Dehls J, Larsen Y, Hogda KA, Weydahl DJ (2008) A comparison of SBAS and PS ERS InSAR for subsidence monitoring in Oslo, Norway. In: Fringe Workshop 25Google Scholar
  19. Lin H, Chen FL, Zhao Q (2011) Land deformation monitoring using coherent target-neighbourhood networking method combined with polarimetric information: a case study of Shanghai, China. Int J Remote Sens 32(9):2395–2407.  https://doi.org/10.1080/01431161003698328 CrossRefGoogle Scholar
  20. Lubitz C, Motagh M, Wetzel HU, Kaufmann H (2013) Remarkable urban uplift in Staufen im Breisgau, Germany: observations from TerraSAR-X InSAR and Leveling from 2008 to 2011. Remote Sens 5(6):3082–3100.  https://doi.org/10.3390/rs5063082 CrossRefGoogle Scholar
  21. Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364(6433):138–142.  https://doi.org/10.1038/364138a0 CrossRefGoogle Scholar
  22. Mouélic SL, Raucoules D, Carnec C, King C, Adragna F (2002) A ground uplift in the city of Paris (France) detected by satellite radar interferometry. Geophys Res Lett 29(17):1222–1224.  https://doi.org/10.1029/2002GL015630 CrossRefGoogle Scholar
  23. Nikos S, Ioannis P, Constantinos L, Paraskevas T, Anastasia K, Charalambos K (2016) Land subsidence rebound detected via multi-temporal InSAR and ground truth data in Kalochori and Sindos regions, Northern Greece. Eng Geol 209:175–186.  https://doi.org/10.1016/j.enggeo.2016.05.017 CrossRefGoogle Scholar
  24. Ogushi F, Shinohara T, Matsuoka M (2015) Surface displacement due to the 2014 North Nagano, Japan earthquake estimated from differential interferometry technique with ALOS-2 PALSAR-2 data. In: IEEE IGARSS, pp 3532–3536Google Scholar
  25. Parcharidis I, Lagios E, Sakkas V, Raucoules D, Feurer D, Mouelic SL, King C, Carnec C, Novali F, Ferretti A (2006) Subsidence monitoring within the Athens Basin (Greece) using space radar interferometric techniques. Earth Planets Space 58(5):505–513.  https://doi.org/10.1186/BF03351947 CrossRefGoogle Scholar
  26. Pepe A, Zhao Q, Bonano M, Lu Z, Zhou Y (2015) The study of the deformation time evolution in coastal areas of Shanghai: a joint C/X-band SBAS-DInSAR analysis. In: IEEE IGARSS, pp 306–309Google Scholar
  27. Pepe A, Bonano M, Zhao Q, Yang T, Wang H (2016) The use of C-/X-band time-gapped SAR data and geotechnical models for the study of Shanghai’s ocean-reclaimed lands through the SBAS-DInSAR technique. Remote Sens 8:911.  https://doi.org/10.3390/rs8110911 CrossRefGoogle Scholar
  28. Perissin D, Wang Z, Lin H (2012) Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J Photogramm Remote Sens 73:58–67.  https://doi.org/10.1016/j.isprsjprs.2012.07.002 CrossRefGoogle Scholar
  29. Pratesi F, Tapete D, Ventisette CD, Moretti S (2016) Mapping interactions between geology, subsurface resource exploitation and urban development in transforming cities using InSAR Persistent Scatterers: two decades of change in Florence, Italy. Appl Geogr 77:20–37.  https://doi.org/10.1016/j.apgeog.2016.09.017 CrossRefGoogle Scholar
  30. Sillerico E, Ezquerro P, Marchamalo M, Herrera G, Duro J, Martínez R (2015) Monitoring ground subsidence in urban environments: M-30 tunnels under Madrid City (Spain). Ing Invest 35(2):30–35.  https://doi.org/10.15446/ing.investigv35nl.46614 CrossRefGoogle Scholar
  31. Sowter A, Amat MB, Cigna F, Marsh S, Athab A, Alshammari L (2016) Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: results using the Intermittent SBAS (ISBAS) technique. Int J Appl Earth Obs 52:230–242.  https://doi.org/10.1016/j.jag.2016.06.015 CrossRefGoogle Scholar
  32. Strozzi T, Wegmuller U (1999) Land subsidence in Mexico City mapped by ERS differential SAR interferometry. IEEE IGARSS 1940–1942.  https://doi.org/10.1109/IGARSS.1999.774993
  33. Sun G, Ranson KJ, Kharuk VI, Kovacs K (2003) Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sens Environ 88(4):401–411.  https://doi.org/10.1016/j.rse.2003.09.001 CrossRefGoogle Scholar
  34. Tapete D, Fanti R, Cecchi R, Petrangeli P, Casagli N (2012) Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. J Geophys Eng 9(4):10–25.  https://doi.org/10.1088/1742-2132/9/4/S10 CrossRefGoogle Scholar
  35. Wang ZY, Perissin D, Lin H (2011) Subway tunnels identification through Cosmo-SkyMed PSInSAR analysis in Shanghai. IEEE IGARSS 1267–1270.  https://doi.org/10.1109/IGARSS.2011.6049430
  36. Wright P, Stow R (1999) Detecting mining subsidence from space. Int J Remote Sens 20(6):1183–1188.  https://doi.org/10.1080/014311699212939 CrossRefGoogle Scholar
  37. Wu JC, Hu FM (2015) Ground subsidence monitoring of high speed roads by using PS-InSAR method. In: 2015 IEEE 5th APSAR, pp 853–858.  https://doi.org/10.1109/APSAR.2015.7306337
  38. Xiong FW, Zhu YW (2007) Land deformation monitoring by GPS in the Yangtze Delta and the measurements analysis. Chin J Geophys 50(6):1501–1514.  https://doi.org/10.1002/cjg2.1170 CrossRefGoogle Scholar
  39. Yan YJ, Doin MP, Lopez-Quiroz P, Tupin F, Fruneau B, Pinel V, Trouve E (2012) Mexico City subsidence measured by InSAR time series: joint analysis using PS and SBAS approaches. IEEE J-STARS 5(4):1312–1326.  https://doi.org/10.1109/JSTARS.2012.2191146 CrossRefGoogle Scholar
  40. Yang MS, Jiang YN, Liao MS, Wang HM (2013a) The analysis of the subsidence patterns in Lingang New City (Shanghai) Using high-resolution SAR images. Shanghai Land Resour 34(4):12–16.  https://doi.org/10.3969/j.issn.2095-1329.2013.04.004 (in Chinese) CrossRefGoogle Scholar
  41. Yang Y, Pepe A, Manzo M, Bonano M, Liang DN, Lanari R (2013b) A simple solution to mitigate noise effects in time-redundant sequences of small baseline multi-look DInSAR interferograms. Remote Sens Lett 4(6):609–618.  https://doi.org/10.1080/2150704X.2013.771826 CrossRefGoogle Scholar
  42. Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote 30(5):950–959.  https://doi.org/10.1109/36.175330 CrossRefGoogle Scholar
  43. Zebker HA, Rosen PA, Hensley S (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res Solid Earth 102(B4):7547–7563.  https://doi.org/10.1029/96JB03804 CrossRefGoogle Scholar
  44. Zhang WR, Duan ZL, Zeng ZQ, Shi HP (2003) Methods to control or arrest land subsidence and their economic benefit in Shanghai. J Tongji Univ 31(7):864–868 (in Chinese) Google Scholar
  45. Zhao Q, Pepe A, Gao W, Lu Z, Bonano M, He ML, Wang J, Tang X (2015) A DInSAR investigation of the ground settlement time evolution of ocean-reclaimed lands in Shanghai. IEEE J-STARS 8(4):1763–1781.  https://doi.org/10.1109/JSTARS.2015.2402168 CrossRefGoogle Scholar
  46. Zyl JJV (2001) The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronaut 48(5–12):559–565.  https://doi.org/10.1016/j.rse.2003.09.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Geography and OceanographyNanjing UniversityNanjingChina
  2. 2.Jiangsu Provincial Key Laboratory of Geographic Information Science and TechnologyNanjing UniversityNanjingChina
  3. 3.Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of ChinaNanjing UniversityNanjingChina
  4. 4.Collaborative Innovation Center of Novel Software Technology and IndustrializationNanjing UniversityNanjingChina
  5. 5.Shanghai Institute of Geological SurveyShanghaiChina
  6. 6.Division of Geology and GeophysicsKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations