Advertisement

Geoelectrical investigations for aquifer characterization and geoenvironmental assessment in northern Morocco

  • Sara Benabdelouahab
  • Adil SalhiEmail author
  • Mahjoub Himi
  • Jamal Eddine Stitou El Messari
  • Albert Casas Ponsati
Original Article

Abstract

The Mediterranean mountains of Morocco (“Rif”) show an intense sensitivity to hydro-climatic hazards. Hydrologic achievements are thwarted by a series of constraints that request strategic consolidation. The acceleration of socioeconomic activities is causing an increasing pressure on water resources that are already facing insufficiency and degradation problems. This paper aims at geophysical characterization of the most important intramountainous alluvial aquifer on the Rif, Ghis–Nekor. Its electrical and hydrogeological properties are investigated through a correlation of 2D electrical resistivity tomography (ERT), vertical electrical sounding (VES) and borehole data. The results have shown that this monolayer coastal aquifer is constituted of large coarse sand, gravel and pebble deposits that overlay substrata of different hydrogeological and electrical types. A geoenvironmental survey was also carried out in the coastal zone and near the uncontrolled waste landfill of Beni Bouayach. The 2D ERT profiles indicate an increase of marine water intrusion (over 2 km) particularly on the eastern bank of the Nekor river. They also show a spread of the landfill leachate flow path beyond 1 km in the direction of the groundwater flow (to the North), towards an area of hydrogeological interest located east of the city of Imzouren. These results imply a socioeconomic and environmental vulnerability that evokes an immediate intervention to restore weakened equilibrium.

Keywords

Geophysics Aquifer geometry Marine intrusion Flow path Coastal aquifer Morocco 

Notes

Acknowledgements

This study was supported by the National Centre for Scientific and Technical Research (CNRST, Morocco) under Contract no. PPR/11/2015. It also was supported by the International Foundation for Science (IFS, Sweden) under Grant no. W5342-1. The authors acknowledge the relevant collaboration with the Loukkos Hydraulic Basin Agency (ABHL, Morocco).

References

  1. Barker R (1989) Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics 54:1031–1037CrossRefGoogle Scholar
  2. Benabdelouahab S, Salhi A, Himi M, Messari E, Ponsati JES, Mesmoudi AC, H., and Benabdelfadel A (2018) Using resistivity methods to characterize the geometry and assess groundwater vulnerability of a Moroccan coastal aquifer. Groundw Sustain Dev 7:293–304CrossRefGoogle Scholar
  3. Benassi M (2008) Drought and climate change in Morocco. Analysis of precipitation field and water supply. Options Méditerranéennes 80:83–87Google Scholar
  4. Binley A, Cassiani G, Middleton R, Winship P (2002) Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. J Hydrol 267:147–159CrossRefGoogle Scholar
  5. Bzioui M (2004) Rapport national 2004 sur les ressources en eau au Maroc. UN Water-Africa, p 94. https://bit.ly/2SNB521
  6. Casas A, Himi M, Diaz Y, Pinto V, Font X, Tapias J (2008) Assessing aquifer vulnerability to pollutants by electrical resistivity tomography (ERT) at a nitrate vulnerable zone in NE Spain. Environ Geol 54:515–520CrossRefGoogle Scholar
  7. Chalouan A, Michard A, El Kadiri K, Negro F, de Lamotte DF, Soto J, Saddiqi O (2008) The Rif Belt. In: Continental evolution: the geology of Morocco, Springer, New York, pp 203–302Google Scholar
  8. Choubert G, Faure-Muret A, Mégard F, Hilali E, Andrieux J (1984) Carte géologique du Rif, Al Hoceima 1/50000. Notes Mém Serv Géol Maroc 302Google Scholar
  9. Custodio E, Llamas MR (1976) Hidrología subterránea. Omega, BarcelonaGoogle Scholar
  10. Dahlin T, Loke MH (1998) Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling. J Appl Geophys 38:237–249CrossRefGoogle Scholar
  11. Driouech F (2010) Distribution des précipitations hivernales sur le Maroc dans le cadre d’un changement climatique: descente d’échelle et incertitudes. Dissertation, Institut National Polytechnique de Toulouse. https://bit.ly/2Ccyb1i
  12. Edwards L (1977) A modified pseudosection for resistivity and IP. Geophysics 42:1020–1036CrossRefGoogle Scholar
  13. El Gharbaoui A (1986) L’homme et la montagne dans la dorsale calcaire du Rif (Maroc septentrional). Revue de l’Occident musulman et de la Méditerranée 41:197–208CrossRefGoogle Scholar
  14. Esper J, Frank D, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34:17CrossRefGoogle Scholar
  15. Ezzine H, Bouziane A, Ouazar D (2014) Seasonal comparisons of meteorological and agricultural drought indices in Morocco using open short time-series data. Int J Appl Earth Obs Geoinf 26:36–48CrossRefGoogle Scholar
  16. Hellman K, Johansson S, Olsson P, Dahlin T (2016) Resistivity inversion software comparison. In: Near surface geoscience 2016-22nd European meeting of environmental and engineering geophysicsGoogle Scholar
  17. Himi M, Tapias J, Benabdelouahab S, Salhi A, Rivero L, Elgettafi M, El Mandour A, Stitou J, Casas A (2017) Geophysical characterization of saltwater intrusion in a coastal aquifer: the case of Martil-Alila plain (North Morocco). J Afr Earth Sci 126:136–147CrossRefGoogle Scholar
  18. Interpex (1988) ResixPlusTM user’s manual (including disks). Interpex, Ltd., Golden, CO, p 120Google Scholar
  19. Kirsch R (2009) Groundwater protection: vulnerability of aquifers. In: Kirsch R (ed), Groundwater geophysics: a tool for hydrogeology, Springer, Berlin, pp 511–523CrossRefGoogle Scholar
  20. Kumar VS, Dhakate R, Amarender B, Sankaran S (2016) Application of ERT and GPR for demarcating the saline water intrusion in coastal aquifers of Southern India. Environ Earth Sci 75:393CrossRefGoogle Scholar
  21. Lehikoinen A, Finsterle S, Voutilainen A, Kowalsky M, Kaipio J (2009) Dynamical inversion of geophysical ERT data: State estimation in the vadose zone. Inverse Probl Sci Eng 17:715–736CrossRefGoogle Scholar
  22. Linacre ET (1993) Data-sparse estimation of lake evaporation, using a simplified Penman equation. Agric For Meteorol 64:237–256CrossRefGoogle Scholar
  23. Loke MH (1999) Electrical imaging surveys for environmental and engineering studies a practical guide to 2-D and 3-D surveys, p 63. https://bit.ly/2SR8xF1
  24. Nold M, Uttinger J, Wildi W (1981) Géologie de la Dorsale calcaire entre Tétouan et Assifane (Rif interne, Maroc). Notes et Mémoires du Service géologique du Maroc 233:1–233Google Scholar
  25. Piqué A, Bouabdelli M (2000) Histoire géologique du Maroc: Découverte et itinéraires. Notes et mémoires du Service géologique, vol 409, Rabat, Maroc Google Scholar
  26. Robert T, Caterina D, Deceuster J, Kaufmann O, Nguyen F (2012) A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones. Geophysics 77:B55–B67CrossRefGoogle Scholar
  27. Robins NS (1998) Recharge: the key to groundwater pollution and aquifer vulnerability. Geological Society, London, Special Publications, vol 130, pp 1–5. https://bit.ly/2TqWun0 CrossRefGoogle Scholar
  28. Roy A, Apparao A (1971) Depth of investigation in direct current methods. Geophysics 36:943–959CrossRefGoogle Scholar
  29. Saadi S, Bensaid M, Dahmani M (1984) Carte géologique du Rif, Al Hoceima. Notes et mémoires du Service géologique, vol 302, Rabat, MarocGoogle Scholar
  30. Salhi A (2008) Géophysique, hydrogéologie et cartographie de la vulnérabilité et du risque de pollution de l’aquifère de Ghis-Nekor. Al Hoceima, MarocGoogle Scholar
  31. Salhi A, Benabdelouahab S (2017) Etude hydrogéologique de la nappe alluviale de Ghis-Nekor, Maroc). Noor Publishing, AlemagneGoogle Scholar
  32. Sebbar A, Badri W, Fougrach H, Hsaine M, Saloui A (2011) Étude de la variabilité du régime pluviométrique au Maroc septentrional (1935–2004). Science et changements planétaires/Sécheresse 22:139–148Google Scholar
  33. Tramblay Y, Bouaicha R, Brocca L, Dorigo W, Bouvier C, Camici S, Servat E (2012) Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrol Earth Syst Sci 16:4375CrossRefGoogle Scholar
  34. Uhlemann S, Kuras O, Richards LA, Naden E, Polya DA (2017) Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia. J Asian Earth Sci 147:402–414CrossRefGoogle Scholar
  35. Voroney RP, Heck RJ (2015) Chapter 2—the soil habitat A2—Paul, Eldor A. In: Soil microbiology, ecology and biochemistry (4th edn). Academic Press, Boston, pp 15–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Earth SciencesUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of GeographyAbdelmalek Essaadi UniversityMartilMorocco
  3. 3.Department of GeologyAbdelmalek Essaadi UniversityTetouanMorocco

Personalised recommendations