Advertisement

Stream sediments geochemistry and the influence of flood phosphate mud in mining area, Metlaoui, Western south of Tunisia

  • Feyda SrarfiEmail author
  • Raouen Rachdi
  • Roland Bol
  • Martina I. Gocke
  • Nadhem Brahim
  • Najet SlimShimi
Original Article
  • 48 Downloads

Abstract

Heavy metals in industrial wastes do worldwide significantly influence surface waters, soils, and human health. The relationships between geochemical stream sediment composition and industrial pollution by phosphate mud flood were examined to assess the severity level of the heavy metal contamination due to the mining activities in the Gafsa-Metlaoui basin (Tunisia). A statistical approach based on linear correlations and principal components analysis of 8 metal contents was used in stream sediment, which was applied to 21 samples of surveyed Metlaoui stream. Within the final model, four Eigen factors did explain almost 90% of the total variance matrix (F1: 42.25%, F2: 19.60%, F3: 15.50 and F4: 10.15%). Three main metal associations were found in the Metlaoui stream sediment. The first was concerned with Titanium (Ti) and Zirconium (Zr) as conservative elements. The second related to the important role of Manganese (Mn) with Iron (Fe) hydroxides in fixing metals. Finally, the third one consisting of Zinc (Zn), Nickel (Ni), Copper (Cu) and Molybdenum (Mo) is all known to be linked to local mining activities sources. The overall degree of contamination was in the following order (high to low): Ti > Zr > Zn > Mo > Mn > Ni > Fe > Cu, but the extent of the contamination did decrease downstream from the mining activity. Phosphate mining activity, especially washing phosphate, leads to an unwanted heavy metals contamination in the nearby surrounding environment.

Keywords

Multivariate statistics Metal associations Phosphate mud Metlaoui Tunisia 

Notes

Acknowledgements

The authors are thankful to Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH and the Division Soil Science, Institute of Crop Science and Resource Conservation (INRES) University of Bonn (Germany). The authors wish to thank all the staff of these two institutions.

References

  1. Abdalla FA, Khalifa IH (2013) Effects of phosphate mining activity on groundwater quality at Wadi Queh, Red Sea, Egypt. Arab J Geosci 6:1273–1282CrossRefGoogle Scholar
  2. Adepoju MO, Adekoya JA (2014) Heavy metal distribution and assessment in stream sediments of River Orle, Southwestern Nigeria. Arab J Geosci 7:743–756CrossRefGoogle Scholar
  3. Al-Hwaiti M, Al Kuisi M, Saffarini G, Alzughoul K (2013) Assessment of elemental distribution and heavy metals contamination in phosphate deposits: potential health risk assessment of finer-grained size fraction, Environ Geochem Health 36(4):651–663.  https://doi.org/10.1007/s10653-013-9587-y CrossRefGoogle Scholar
  4. Al-Hwaiti M, Al Kuisi M, Saffarini G, Alzughoul K (2014) Assessment of elemental distribution and heavy metals contamination in phosphate deposits: potential health risk assessment of finer-grained size fraction. Environ Geochem Health 23(4):417–436Google Scholar
  5. Ali AR, Talabani MJA (2018) Heavy Metals Distribution And Their Correlation With Clay Size Fraction In Stream Sediments Of The Lesser Zab River at Northeastern Iraq. J Geosci Environ Prot 6:89–106Google Scholar
  6. Asfers Y, Taouil H, Hanafi H, Elanza S, Ibn Ahmed S, Aboulouafa M (2017) Study of the sediments metallic contamination in Oum Er-Rbia Estuary. J Appl Chem 10(1):67–75Google Scholar
  7. Askri B, Bouhlila R (2010) Évolution de la salinité dans une oasis moderne de la Tunisie. Etude et Gestion des Sols 17(3–4):197–212Google Scholar
  8. Ayodele OS, Awokunmi EE, Oshin O (2017) Appraisal of heavy metals pollution in the stream sediments from Okemesi-Ijero Area, Southwestern Nigeria: insight from geochemical fractionations and multivariate analysis techniques. J Phys Sci Environ Stud 3(4):36–47Google Scholar
  9. Bandmann O, Weiss KH, Kaler SG (2017) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113CrossRefGoogle Scholar
  10. Barbier F (1999) Rétention du plomb II et du cadmium II par une barrière argileuse. Transfert métalliques et influence de la complexation. PhD. Claude Bernard University Lyon I., 129pGoogle Scholar
  11. BGS (British Geological Survey) (2003) Geochemical survey of the Tamar catchment (south-west England); BGS Economic Minerals and Geochemical Baselines Programme Environment Agency (SW Region), Report CR/03/027Google Scholar
  12. Box SE, Bookstrom AA, Ikramuddin M (2005) Stream-Sediment Geochemistry in Mining Impacted Streams: Sediment Mobilized by Floods in the Coeur d’Alene-Spokane River System, Idaho and Washington. U.S. Geological SurveyGoogle Scholar
  13. Chalbaoui M (2000) Vulnérabilité des nappes superficielles et subaffleurantes du Sud-Ouest tunisien. Sécheresse 11(2):85–91Google Scholar
  14. Cocker MD (1998) Distribution of selected elements in stream sediments, stream hydrogeochemistry, and geology of the Flint River basin, Georgia; The Georgia Environmental Protection Division, Bulletin 129Google Scholar
  15. Dalu T, Wasserman RJ, Wu Q, Froneman WP, Wey OLF (2018) River sediment metal and nutrient variations along an urban–agriculture gradient in an arid austral landscape: implications for environmental health. Environ Sci Pollut Res 25(3):2842–2852.  https://doi.org/10.1007/s11356-017-0728-1 CrossRefGoogle Scholar
  16. Dinelli E, Cortecci G, Lucchini F, Zantedeschi E (2005) Sources of major and trace elements in the stream sediments of the Arno river catchment (northern Tuscany, Italy). Geochem J 39:531–545CrossRefGoogle Scholar
  17. Eker SC, Sipahi F, zkan O, Gumu MK (2017) Evaluation of potentially toxic element contents and Pb isotopic compositions in Ankara Stream sediments within an urban catchment in central Turkey. Environ Earth Sci 76:647CrossRefGoogle Scholar
  18. El-Hasan T (2006) Geochemical dissociation of major and trace elements in bed and suspended sediment phases of the phosphate mines effluent water, Jordan. Environ Geol 51(4):621–629.  https://doi.org/10.1007/s00254-006-0357-3 CrossRefGoogle Scholar
  19. Eloussaief M, Sdiri A, Benzina M (2013) Modelling the adsorption of mercury on to natural and aluminium pillared clays. Environ Sci Pollut Res 20:469–479CrossRefGoogle Scholar
  20. Fan S (2014) Assessment of heavy metal pollution in stream sediments for the Baoji City section of the Weihe River in Northwest China. Water Sci Technol 70(7):1279–1284CrossRefGoogle Scholar
  21. Galfati I, Bilal E, Beji SA, Abdallah H, Zaier A (2011) Accumulation of heavy metals in native plants growing near the phosphate treatment industry, Tunisia. Carpathian J Earth Environ Sci 6(2):67–82Google Scholar
  22. Galfati I, Bilal E, Abdallah H, Beji SA (2014) Geochemistry of solid effluents and phosphate ore washed from Métlaoui-Gafsa basin, Tunisia Rom. J Mineral Depos 87(2):83–86Google Scholar
  23. Hakanson L (1980) An ecological risk index for aquatic pollution control. Sedimentol Approach Water Res 14(8):975–1001Google Scholar
  24. Hakkou R, Benzaazouab M, Bussière B (2016) Valorization of phosphate waste rocks and sludge from the Moroccan phosphate mines: challenges and perspectives. Proc Eng 138:110–118CrossRefGoogle Scholar
  25. Halamic J, Peh Z, Bukovec D, Miko S, Galovi L (2001) A Factor Model of the Relationship between Stream Sediment Geochemistry and Adjacent Drainage Basin Lithology, Medvednica Mt., Croatia, Geologia Croatica 37–51Google Scholar
  26. Henchiri M, Fattah N (2013) Extent of diagenetic transformations in severely altered biogenic silica deposits from Tunisia: new insights from mineralogy and geochemistry. Arab J Geosci 7(3):1179–1186.  https://doi.org/10.1007/s12517-012-0827-8 CrossRefGoogle Scholar
  27. Henchiri M, Slim-Shimi N (2006) Silicification of sulphate evaporites and their carbonate replacements in Eocene marine sediments, Tunisia: two diagenetic trends. Sedimentology 53:1135–1159CrossRefGoogle Scholar
  28. Humsa TZ, Srivastava RK (2015) Impact of rare earth mining and processing on soil and water environment at Chavara, Kollam, Kerala: a case study. Proc Earth Planet Sci 11:566–581CrossRefGoogle Scholar
  29. Joubert A, Jauzein M, Lucas L, Joulian C, Garrido F (2006) Étude des processus biogéochimiques prépondérants responsables de la mobilité du Pb, Cd, Zn, As et Hg du sol vers l’hydrosphère. Rapport de fin de première année de thèse. BRGM/RP-54483-FR, p 151Google Scholar
  30. Khelifi L (2012) Contribution à l’étude géochimique des phosphates du bassin de Gafsa-Métlaoui: Exemple du Gisement d’Oum EL Khecheb. Master, Tunis el Manar UniversityGoogle Scholar
  31. Kim SM, Choi Y, Yi H (2017) Hyeong-Dong Park geostatistical prediction of heavy metal concentrations in stream sediments considering the stream networks. Environ Earth Sci 76:72CrossRefGoogle Scholar
  32. Koutsopoulou E, Tsolis-Katagas P, Papoulis D (2010) Heavy metals in stream sediments affected by a landfill and associated impact on groundwater quality. Bull Geol Soc Greece 43:2635–2645CrossRefGoogle Scholar
  33. Krekeler MPS, Morton J, Lepp J, Tselepis CM, Samsonov M, Kearn LE (2008) Mineralogical and geochemical investigation of clay-rich mine tailings from a closed phosphate mine, Bartow Florida, USA. Environ Geol 55:123–147CrossRefGoogle Scholar
  34. Kumar P, Kumar R, Reddy MV (2017) Assessment of sewage treatment plant effluent and its impact on the surface water and sediment quality of river Ganga at Kanpur. Int J Sci Eng Res 8(1):1315–1324Google Scholar
  35. Kuusisto-Hjort P, Hjort J (2013) Land use impacts on trace metal concentrations of suburban stream sediments in the Helsinki region, Finland Sci Total Environ 456 222–230CrossRefGoogle Scholar
  36. Liu CY, Zhang JD, Li F, Yang J, Qiu ZZ, Cai Y, Zhu Li Y, Xiao M, Wu Z (2018) Trace elements spatial distribution characteristics, risk assessment and potential source identification in surface water from Honghu Lake, China. J Central South Univ 25(7):1598–1611CrossRefGoogle Scholar
  37. Loska K, Wiechulab D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30(2):159–165.  https://doi.org/10.1016/S0160-4120(03)00157-0 CrossRefGoogle Scholar
  38. Mabrouki C (2009) Les laveries de phosphates de Moularès et Métlaoui: la gestion de l’eau et l’impact sur l’environnement. Mastère Université de Sfax. Tunisie. p 109Google Scholar
  39. Marzougui S, Sdiri A, Rkhiss F (2016) Heavy metals mobility from phosphate washing effluents discharged in the Gafsa area (southwestern Tunisia). Arab J Geosci 9(12):599.  https://doi.org/10.1007/s12517-016-2613-5 CrossRefGoogle Scholar
  40. Mekki A, Awali A, Aloui F, Loukil S, Sayadi S (2016) Characterization and toxicity assessment of wastewater from rock phosphate processing in Tunisia. Mine Water Environ 36(4):502–507.  https://doi.org/10.1007/s10230-016-0424-2 CrossRefGoogle Scholar
  41. Miko S, Halamic J, Peh Z, Galovi L (2001) Geochemical baseline mapping of soils developed on diverse bedrock from two regions in Croatia. Geologia Croatica 54(1):53–118Google Scholar
  42. Ministry of the Environment of Canada (2011) Soil, ground water and sediment standards for use under Part XV.1 of the environmental protection Act. Ontario. p 40Google Scholar
  43. Mishra S, Dwivedi SP, Singh RB (2010) A review on epigenetic effect of heavy metal carcinogens on human health. Open Nutraceuticals J 3:188–193Google Scholar
  44. Mohamed R, Ben Brahim A, Taieb D (2012) Atmospheric PM10 pollution in the mining basin of Gafsa (south-western of Tunisia): statistical analysis and cartography. p 11 http://www.geosp.net
  45. Mohamed R, Taieb D, Ben Brahim A (2014) Chemical and mineralogy characteristics of dust collected near the phosphate mining basin of Gafsa (South-Western of Tunisia). J Environ Anal Toxicol 4:234Google Scholar
  46. Mohammed NK, Nkuba LL (2017) Concentration levels and the associated health risks of elements in food crops grown in the neighbourhood of Minjingu Phosphate Mine, Tanzania. Chem Sci Int J 18(1):1–9CrossRefGoogle Scholar
  47. Mohod CV, Dhote J (2013) Review of heavy metals in drinking water and their effect on human health. Int J Innov Res Sci, Eng Technol 2(7):2992–2996Google Scholar
  48. Nova Scotia Environment (2014) Environmental Quality Standards for Contaminated Sites. Rationale and Guidance DocumentGoogle Scholar
  49. Obasi RA, Isinkaye MO, Ogungbuyi PI (2016) Contamination status: geo-investigation of stream sediments of Ilubirin Bitumen rich area of Ondo state, southwest Nigeria using oxide and trace metals. Research Journal (SCIRJ) IV (I)Google Scholar
  50. Okour YH, Ahmed SS (2015) Recovery of Titania from Waste-Sludge of Majmaah Water Treatment Plant. Conference PaperGoogle Scholar
  51. Oyebamiji A, Odebunmi A, Ruizhong H, Rasool A (2017) Assessment of trace metals contamination in stream sediments and soils in Abuja leather mining, south-western Nigeria Acta Geochim 37 (4): 592–613.  https://doi.org/10.1007/s11631-017-0256-1 CrossRefGoogle Scholar
  52. Rosales Hoz L, Carranza EA, Santiago PS (1994) Heavy metals in rocks and stream sediments from the northwestern part of Baja California. Mexico Rev Int Contam Ambient 10(2):77–82Google Scholar
  53. Sankhla MS, Sharma K, Kumar R (2017) Heavy Metal Causing Neurotoxicity in Human Health. Int J Innov Res Sci, Eng Technol 6(5):7721–7726Google Scholar
  54. Sdiri A, Higashi T, Jamoussi F, Bouaziz S, Hatta T, Jamoussi F, Tase N, Bouaziz S (2012) Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J Environ Manage 93:171–179CrossRefGoogle Scholar
  55. Sekabira K, Oryem-Origa H, Basamba TA, Mutumba G, Kakudidi E (2010) Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Tech 7(3):435–446CrossRefGoogle Scholar
  56. Sekabira K, Oryem-Origa H, Basamba TA, Mutumba G, Kakudidi E (2012) Grain size and source apportionment of heavy metals in urban stream sediments. Water Pollut Chap 4:69–88Google Scholar
  57. Shi Y, Gan L, Li X, He S, Sun Ch, Gao L (2018) Dynamics of metals in backfill of a phosphate mine of guiyang, China using a three-step sequential extraction technique. Chemosphere 192:354–361CrossRefGoogle Scholar
  58. Singh SP, Ma LQ, Harris WG (2001) Heavy Metal interactions with phosphatic clay: sorption and desorption behaviour. J Environ Qual 30:1961–1968CrossRefGoogle Scholar
  59. Singo NK (2013) An assessment of heavy metal pollution near an old copper mine dump in Musina, south Africa; Master of Science, University of South AfricaGoogle Scholar
  60. Skeries K, Jamieson H, Falck H, Paradis S, Day S (2017) Geochemical and mineralogical controls on metal(loid) dispersion in streams and stream sediments in the Prairie Creek district. NWT Geochem Explor Environ Anal 17(1):1–19.  https://doi.org/10.1144/geochem2015-375 CrossRefGoogle Scholar
  61. Thomas LDK, Hodgson S, Nieuwenhuijsen M, Jarup L (2009) Early kidney damage in a population exposed to cadmium and other heavy metals. Environ Health Perspect 117(2):181–184CrossRefGoogle Scholar
  62. Tóth G, Hermannb T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309CrossRefGoogle Scholar
  63. Wardhani E, Notodarmojo S, Roosmini D (2018) Stream sediment geochemical survey of selected element in catchment area of Saguling lake. MATEC Web of Conferences 147Google Scholar
  64. Zeiner M. Juranović C I. Ivanović M, Medunić G, Kampić S, Tomašić N, Stingeder G (2015) Availability of selected (pollutant) elements and their influence on soil composition in urban area Croat. Chem Acta 88(1):23–33Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Feyda Srarfi
    • 1
    Email author
  • Raouen Rachdi
    • 1
  • Roland Bol
    • 2
  • Martina I. Gocke
    • 3
  • Nadhem Brahim
    • 1
  • Najet SlimShimi
    • 1
  1. 1.Faculty of Sciences of Tunis, Laboratory 3G LR18ES37University of Tunis El ManarTunisTunisia
  2. 2.Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbHJülichGermany
  3. 3.Division Soil Science, Institute of Crop Science and Resource Conservation (INRES)University of BonnBonnGermany

Personalised recommendations