Advertisement

Climatic and environmental signals recorded in the EGRIP snowpit, Greenland

  • Zhiheng DuEmail author
  • Cunde Xiao
  • Qi Zhang
  • Chuanjin Li
  • Feiteng Wang
  • Ke Liu
  • Xiangyu Ma
Original Article
  • 97 Downloads

Abstract

Polar ice sheets conserve atmospheric mineral dust (aerosols) at the time of snowfall, and this material can be used to reconstruct historical climate and environmental conditions. Snowpit samples were obtained from the East Greenland Ice Core Project (EGRIP) site in July 2017. Mineral dust concentrations as well as stable water isotope (δ18O, δD, and deuterium excess) and major ion (F, Cl, \({\text{NO}}_{2}^{-}\), \({\text{NO}}_{3}^{-}\), \({\text{SO}}_{4}^{2-}\), methanesulfonic acid (MSA), Na+, \({\text{NH}}_{\text{4}}^{\text{+}}\), Mg2+ and Ca2+) concentrations were analyzed in this study. The seasonal δ18O and δD cycles indicate that the snowpit samples covered the period from winter 2012 to summer 2017. The concentrations of mineral dust and Ca2+ showed seasonal deposition events with maxima in the spring layers. The concentrations of MSA exhibited maxima in the summer layers, making them useful indicators for the summer season. Moreover, an anomalous non-sea salt \({\text{SO}}_{4}^{2-}\) (nss \({\text{SO}}_{4}^{2-}\)) event was recorded at a depth of 130 − 85 cm that corresponded to the Holuhraun eruption (31 August 2014). In addition, a significant short-term cooling effect was observed. A back-trajectory analysis suggests that a major ash event from Iceland contributed to the Greenland ice sheet (GrIS). These results provide insight for future studies of the EGRIP ice core.

Keywords

Mineral dust Major ions Environmental signal Holuhraun eruption East GRIP 

Notes

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19070103), the National Natural Science Foundation of China (Grant No. 41425003; 41701071) and the CAS “Light of West China” Program.

Compliance with ethical standards

Conflict of interest

The authors confirm that there are no conflicts of interest in this research.

References

  1. Ambrose SH (1998) Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J Hum Evol 34:623–651.  https://doi.org/10.1006/jhev.1998.0219 CrossRefGoogle Scholar
  2. Biscaye PE, Grousset FE, Revel M, Van der Gaast S, Zielinski GA, Vaars A, Kukla G (1997) Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 ice core, Summit, Greenland. J Geophys Res 102:26765–26781.  https://doi.org/10.1029/97JC01249 CrossRefGoogle Scholar
  3. Boisvert LN, Stroeve JC (2015) The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder. Geophys Res Lett 42:4439–4446.  https://doi.org/10.1002/2015GL063775 CrossRefGoogle Scholar
  4. Bory AJM, Abouchami W, Galer SJG, Svensson A, Christensen JN, Biscaye PE (2014) A chinese imprint in insoluble pollutants recently deposited in central greenland as indicated by lead isotopes. Environ Sci Technol 48:1451–1457.  https://doi.org/10.1021/es4035655 CrossRefGoogle Scholar
  5. Clausen HB, Hammer CU, Hvidberg CS, Dahl-Jensen D, Steffensen JP, Kipfstuhl J, Legrand M (1997) A comparison of the volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye3 Greenland ice cores. J Geophys Res 102:26707–26723.  https://doi.org/10.1029/97JC00587 CrossRefGoogle Scholar
  6. Cole-Dai J, Ferris D, Lanciki A, Savarino J, Baroni M, Thiemens MH (2009) Cold decade (AD 1810–1819) caused by Tambora (1815) and another (1809) stratospheric volcanic eruption. Geophys Res Lett 36:L22703.  https://doi.org/10.1029/2009GL040882 CrossRefGoogle Scholar
  7. Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Charland A, Liu Y, Haugen M, Tsiang M, Rajaratnam B (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proc Nat Acad Sci 114:4881–4886.  https://doi.org/10.1073/pnas.1618082114
  8. Dong Z, Kang S, Qin D, Li Y, Wang X, Ren J, Li X, Yang J, Qin X (2016) Provenance of cryoconite deposited on the glaciers of the Tibetan Plateau: New insights from Nd-Sr isotopic composition and size distribution. J Geophys Res 121:7371–7382.  https://doi.org/10.1002/2016JD024944 CrossRefGoogle Scholar
  9. Drab E, Gaudichet A, Jaffrezo JL, Colin JL (2002) Mineral particles content in recent snow at Summit (Greenland). Atmos Environ 36:5365–5376.  https://doi.org/10.1016/S1352-2310(02)00470-3 CrossRefGoogle Scholar
  10. Fischer H, Siggaard Andersen ML, Ruth U, Röthlisberger R, Wolff E (2007) Glacial/interglacial changes in mineral dust and sea -salt records in polar ice cores: sources, transport, and deposition. Rev Geophys 45:1.  https://doi.org/10.1029/2005RG000192 CrossRefGoogle Scholar
  11. Fuhrer K, Wolff EW, Johnsen SJ (1999) Timescales for dust variability in the greenland ice core project (GRIP) ice core in the last 100,000 years. J Geophys Res 104:31043–31052.  https://doi.org/10.1029/1999JD900929 CrossRefGoogle Scholar
  12. Galeczka I, Sigurdsson G, Eiriksdottir ES, Oelkers EH, Gislason SR (2016) The chemical composition of rivers and snow affected by the 2014/2015 Bárðarbunga eruption, Iceland. J Volcanol Geother Res 316:101–119.  https://doi.org/10.1016/j.jvolgeores.2016.02.017 CrossRefGoogle Scholar
  13. Graham RM, Cohen L, Petty AA, Boisvert LN, Rinke A, Hudson SR, Nicolaus M, Granskog MA (2017) Increasing frequency and duration of Arctic winter warming events. Geophys Res Lett 44:6974–6983.  https://doi.org/10.1002/2017GL073395 CrossRefGoogle Scholar
  14. Graversen RG, Mauritsen T, Tjernström M, Källén E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:53.  https://doi.org/10.1038/nature06502 CrossRefGoogle Scholar
  15. Groot Zwaaftink CD, Grythe H, Skov H, Stohl A (2016) Substantial contribution of northern high-latitude sources to mineral dust in the Arctic. J Geophys Res 121:13, 613–678.  https://doi.org/10.1002/2016JD025482. 697.CrossRefGoogle Scholar
  16. Halmer MM, Schmincke HU, Graf HF (2002) The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J Volcanol Geoth Res 115:511–528.  https://doi.org/10.1016/S0377-0273(01)00318-3 CrossRefGoogle Scholar
  17. Hanna E, Fettweis X, Mernild SH, Cappelen J, Ribergaard MH, Shuman CA, Steffen K, Wood L, Mote TL (2014) Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int J Climatol 34:1022–1037.  https://doi.org/10.1002/joc.3743 CrossRefGoogle Scholar
  18. Kang JH, Hwang H, Hong SB, Hur SD, Choi SD, Lee J, Hong S (2015) Mineral dust and major ion concentrations in snowpit samples from the NEEM site. Greenland Atmos Environ 120:137–143.  https://doi.org/10.1016/j.atmosenv.2015.08.062 CrossRefGoogle Scholar
  19. Kim BM, Hong JY, Jun SY, Zhang X, Kwon H, Kim SJ, Kim JH, Kim SW, Kim HK (2017a) Major cause of unprecedented Arctic warming in january 2016: critical role of an Atlantic windstorm. Sci Rep-Uk 7:40051.  https://doi.org/10.1038/srep40051 CrossRefGoogle Scholar
  20. Kim J, Kug J, Jeong S, Huntzinger DN, Michalak AM, Schwalm CR, Wei Y, Schaefer K (2017b) Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat Geosci 2017, 10(8):572–576.  https://doi.org/10.1038/ngeo2986 CrossRefGoogle Scholar
  21. Kretschmer M, Coumou D, Agel L, Barlow M, Tziperman E, Cohen J (2017) More-Persistent weak stratospheric polar vortex states linked to cold extremes. B Am Meteorol Soc.  https://doi.org/10.1175/BAMS-D-16-0259.1 CrossRefGoogle Scholar
  22. Kuramoto T, Gotoazuma K, Hirabayashi M, Miyake T, Motoyama H, Dahljensen D, Steffensen JP (2011) Seasonal variations of snow chemistry at NEEM, Greenland. Ann Glaciol 52:193–200.  https://doi.org/10.3189/172756411797252365 CrossRefGoogle Scholar
  23. Larsen LB, Vinther BM, Briffa KR, Melvin TM, Clausen HB, Jones PD, Siggaard-Andersen ML, Hammer CU, Eronen M, Grudd H, Gunnarson BE, Hantemirov RM, Naurzbaev MM, Nicolussi K (2008) New ice core evidence for a volcanic cause of the A.D. 536 dust veil. Geophys Res Lett.  https://doi.org/10.1029/2007GL032450 CrossRefGoogle Scholar
  24. Legrand M, Mayewski P (1997) Glaciochemistry of polar ice cores: a review. Rev Geophys 35:219–243.  https://doi.org/10.1029/96RG03527 CrossRefGoogle Scholar
  25. Li C, Kang S, Shi G, Huang J, Ding M, Zhang Q, Zhang L, Guo J, Xiao C, Hou S, Sun B, Qin D, Ren J (2014) Spatial and temporal variations of total mercury in Antarctic snow along the transect from Zhongshan Station to Dome A. Tellus B: Chemical and Physical Meteorology. 66:25152.  https://doi.org/10.3402/tellusb.v66.25152
  26. Masson-Delmotte V, Jouzel J, Landais A, Stievenard M, Johnsen SJ, White JWC, Werner M, Sveinbjornsdottir A, Fuhrer K (2005) GRIP Deuterium Excess Reveals Rapid and Orbital-Scale changes in greenland moisture origin. Science 309:118–121.  https://doi.org/10.1126/science.1108575 CrossRefGoogle Scholar
  27. Mayewski PA, Meeker LD, Morrison MC, Twickler MS, Whitlow SI, Ferland KK, Meese DA, Legrand MR, Steffensen JP (1993) Greenland ice core “signal” characteristics: An expanded view of climate change. J Geophys Res 98:12839–12847.  https://doi.org/10.1029/93JD01085 CrossRefGoogle Scholar
  28. McConnell JR, Edwards R (2008) Coal burning leaves toxic heavy metal legacy in the Arctic. Proc Nat Acad Sci 105:12140–12144.  https://doi.org/10.1073/pnas.0803564105 CrossRefGoogle Scholar
  29. O’Dwyer J, Isaksson E, Vinje T, Jauhiainen T, Moore J, Pohjola V, Vaikmäe R, Wal RS, WV (2000) Methanesulfonic acid in a Svalbard Ice Core as an indicator of ocean climate. Geophys Res Lett 27:1159–1162.  https://doi.org/10.1029/1999GL011106 CrossRefGoogle Scholar
  30. Overland JE, Wang M (2016) Recent extreme arctic temperatures are due to a split polar vortex. J Climate 29:5609–5616.  https://doi.org/10.1175/JCLI-D-16-0320.1 CrossRefGoogle Scholar
  31. Oyabu I, Iizuka Y, Fischer H, Schüpbach S, Gfeller G, Svensson A, Fukui M, Steffensen JP, Hansson M (2015) Chemical compositions of solid particles present in the Greenland NEEM ice core over the last 110,000 years. J Geophys Res 120:9789–9813.  https://doi.org/10.1002/2015JD023290 CrossRefGoogle Scholar
  32. Pedersen GBM, Höskuldsson A, Dürig T, Thordarson T, Jónsdóttir I, Riishuus MS, Óskarsson BV, Dumont S, Magnusson E, Gudmundsson MT, Sigmundsson F, Drouin VJPB, Gallagher C, Askew R, Gudnason J, Moreland WM, Nikkola P, Reynolds HI, Schmith J (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun. Iceland J Volcanol Geoth Res 340:155–169.  https://doi.org/10.1016/j.jvolgeores.2017.02.027 CrossRefGoogle Scholar
  33. Ram M, Stolz M, Koenig G (1997) Eleven year cycle of dust concentration variability observed in the dust profile of the GISP2 Ice core from central Greenland: Possible solar cycle connection. Geophys Res Lett 24:2359–2362.  https://doi.org/10.1029/97GL02521 CrossRefGoogle Scholar
  34. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219.  https://doi.org/10.1029/1998RG000054 CrossRefGoogle Scholar
  35. Röthlisberger R, Bigler M, Hutterli M, Sommer S, Stauffer B, Junghans HG, Wagenbach D (2000) Technique for continuous high-resolution analysis of trace substances in firn and ice cores. Environ Sci Technol 34:338–342.  https://doi.org/10.1021/es9907055 CrossRefGoogle Scholar
  36. Ruth U, Wagenbach D, Steffensen JP, Bigler M (2003) Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. J Geophys Res 108.  https://doi.org/10.1029/2002JD002376
  37. Schmidt A, Leadbetter S, Theys N, Carboni E, Witham CS, Stevenson JA, Birch CE, Thordarson T, Turnock S, Barsotti S, Delaney L, Feng W, Grainger RG, Hort MC, Höskuldsson Á, Ialongo I, Ilyinskaya E, Jóhannsson T, Kenny P, Mather TA, Richards NAD, Shepherd J (2015) Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). J Geophys Res 120:9739–9757.  https://doi.org/10.1002/2015JD023638 CrossRefGoogle Scholar
  38. Sigl M, McConnell JR, Layman L, Maselli O, McGwire K, Pasteris D, Dahl Jensen D, Steffensen JP, Vinther B, Edwards R (2013) A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J Geophys Res 118:1151–1169.  https://doi.org/10.1029/2012JD018603 CrossRefGoogle Scholar
  39. Sodemann H, Schwierz C, Wernli H (2008) Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J Geophys Res.  https://doi.org/10.1029/2007JD008503 CrossRefGoogle Scholar
  40. Steffensen JP (1997) The size distribution of microparticles from selected segments of the Greenland Ice Core Project ice core representing different climatic periods. J Geophys Res 102:26755–26763.  https://doi.org/10.1029/97JC01490 CrossRefGoogle Scholar
  41. Újvári G, Stevens T, Svensson A, Klötzli US, Manning C, Németh T, Kovács J, Sweeney MR, Gocke M, Wiesenberg GL (2015) Two possible source regions for central Greenland last glacial dust. Geophys Res Lett.  https://doi.org/10.1002/2015GL066153 CrossRefGoogle Scholar
  42. Vallelonga P, Christianson K, Alley RB, Anandakrishnan S, Christian JEM, Dahl-Jensen D, Gkinis V, Holme C, Jacobel RW, Karlsson NB, Keisling BA, Kipfstuhl S, Kjær HA, Kristensen MEL, Muto A, Peters LE, Popp T, Riverman KL, Svensson AM, Tibuleac C, Vinther BM, Weng Y, Winstrup M (2014) Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS). Cryosphere. 8:1275–1287.  https://doi.org/10.5194/tc-8-1275-2014, 2014CrossRefGoogle Scholar
  43. Williams MAJ, Ambrose SH, van der Kaars S, Ruehlemann C, Chattopadhyaya U, Pal J, Chauhan PR (2009) Environmental impact of the 73 ka Toba super-eruption in South Asia. Palaeogeogr Palaeoclimatol Palaeoecol 284:295–314.  https://doi.org/10.1016/j.palaeo.2009.10.009 CrossRefGoogle Scholar
  44. Wolff EW (1995) Nitrate in Polar Ice. Ice core studies of global biogeochemical cycles. Springer, Berlin, 1995. 195–224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhiheng Du
    • 1
    Email author
  • Cunde Xiao
    • 2
  • Qi Zhang
    • 3
  • Chuanjin Li
    • 1
  • Feiteng Wang
    • 1
  • Ke Liu
    • 4
  • Xiangyu Ma
    • 1
  1. 1.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.State Key Laboratory of Land Surface Processes and Resource EcologyBeijing Normal UniversityBeijingChina
  3. 3.Institute of Climate System, China Meteorology AdministrationChinese Academy of Meteorological ScienceBeijingChina
  4. 4.School of Geographic and Oceanographic SciencesNanjing UniversityNanjingChina

Personalised recommendations