Advertisement

Adsorption behaviors of Eu(III) on granite: batch, electron probe micro-analysis and modeling studies

  • Hong Li
  • Bihong He
  • Ping Li
  • Qiaohui FanEmail author
  • Hanyu Wu
  • Jianjun Liang
  • Chunli Liu
  • Tao YuEmail author
Original Article
  • 47 Downloads

Abstract

Although granite has been widely considered as the host rock of the high-level radioactive waste (HLRW) repository in the world, the adsorption behaviors of radionuclides on granite are quite complicated and still unclear, especially at molecular scales. In this study, the adsorption behaviors of europium(III) on Beishan granite (BSG), a preliminary selection of host rock for the HLRW repository in China, were explored under environmental conditions combining batch, electron probe micro-analyzer (EPMA), and modeling approaches. X-ray diffraction (XRD) pattern confirmed that albite, quartz and biotite were the main mineralogical components for the BSG grains. Eu(III) species on BSG grains are predominant as the ion exchange (≡X3Eu0) and the inner sphere complexes of ≡SwOEu(OH)20, ≡SsOEu(OH)2,0 ≡SsOEu2+, and ≡SwOEu2+. EPMA showed that the distribution of Eu(III) on BSG grains was strongly correlated to the biotite, which suggested that biotite is the host phase for retarding trivalent actinides in the BSG grains. The presence of soil humic and fulvic acids could enhance Eu(III) adsorption on BSG grains under low-pH conditions, and inhibit the adsorption under higher pH range.

Keywords

Granite Eu(III) Adsorption/desorption Modeling EPMA 

Notes

Acknowledgements

This study was supported by the Natural National Science Foundation of China (Grant nos. 21601179, 41573128, 21876172, and 21601169), the Key Laboratory Project of Gansu Province (Grant no. 1309RTSA041), Natural Science Foundation of Jiangxi Province (Grant no. 2016BAB203100) and by the “100-Talent” Program from the Chinese Academy of Sciences.

References

  1. Baek K, Yang JW (2004) Sorption and desorption characteristics of cobalt in clay: Effect of humic acids. Korean J Chem Eng 21(5):989–993CrossRefGoogle Scholar
  2. Bierkens J, Simkiss K (1990) The use of chemical analogues such as Eu/Am in ecotoxicological studies. Funct Ecology 4(3):445–447CrossRefGoogle Scholar
  3. Bradbury MH, Baeyens B (2002) Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66(13):2325–2334CrossRefGoogle Scholar
  4. Dario M, Molera M, Allard B (2006) Sorption of europium on TiO2 and cement at high pH in the presence of organic ligands. J Radioanal Nucl Chem 270(3):495–505CrossRefGoogle Scholar
  5. Ding CC, Cheng WC, Sun YB, Wang XK (2005) Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J Hazard Mater 295:127–137CrossRefGoogle Scholar
  6. Fan QH, Wu WS, Song XP, Xu JZ, Hu JH, Niu ZW (2008) Effect of humic acid, fulvic acid, pH and temperature on the sorption–desorption of Th(IV) on attapulgite. Radiochim Acta 96(3):159–165Google Scholar
  7. Fan QH, Tan XL, Li JX, Wang XK, Wu WS (2009) Sorption of Eu(III) on attapulgite studied by Batch, XPS, and EXAFS techniques. Environ Sci Technol 43(15):5776–5782CrossRefGoogle Scholar
  8. Fan QH, Li P, Chen YF, Wu WS (2011) Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(VI) from aqueous solution. J Hazard Mat 192(3):1851–1859CrossRefGoogle Scholar
  9. Fan QH, Zhao XL, Ma XX, Yang YB, Wu WS, Zheng GD, Wang DL (2015) Comparative adsorption of Eu(III) and Am(III) on TPD. Environ Sci Proc Impacts 17(9):1634–1640CrossRefGoogle Scholar
  10. Fukushi K, Hasegawa Y, Maeda K, Aoi Y, Tamura A, Arai S, Yamamoto Y, Aosai D, Mizuno T (2013) Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies. Environ Sci Technol 47(22):12811–12818CrossRefGoogle Scholar
  11. Guo ZJ, Xu J, Shi KL, Tang YQ, Wu WS, Tao ZY (2009) Eu(III) adsorption/desorption on Na-bentonite: experimental and modeling studies. Colloids Surf A Physicochem Eng Asp 339(1/3):126–133CrossRefGoogle Scholar
  12. Holgersson S (2012) Studies on batch sorption methodologies: Eu sorption onto Kivetty granite. Procedia Chem 7(7):629–640CrossRefGoogle Scholar
  13. Huang XF, He JG, Xu GQ (2009) Pre-selection research on granite mass for high level radioactive waste repository. World Nucl Geosci 26(4):219–227Google Scholar
  14. Ishida K, Kimura T, Saito T, Tanaka S (2009) Adsorption of Eu(III) on a heterogeneous surface studied by time-resolved laser fluorescence microscopy (TRLFM). Environ Sci Technol 43(6):1744–1749CrossRefGoogle Scholar
  15. Kitamura A, Yamamoto T, Nishikawa S, Moriyama H (1999) Sorption behavior of Am(III) onto granite. J Radioanal Nucl Chem 239(3):449–453CrossRefGoogle Scholar
  16. Lee SG, Kim Y, Chae BG, Koh DC, Kim KH (2004) The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Appl Geochem 19(11):1711–1725CrossRefGoogle Scholar
  17. Lee SG, Lee KY, Cho SY, Yoon SY, Kim YJ (2006) Sorption properties of 152Eu and 241Am in geological materials: Eu as an analogue for monitoring the Am behaviors in heterogeneous geological environments. Geosci J 10(2):103–114CrossRefGoogle Scholar
  18. Li P, Fan Q, Pan D, Liu S, Wu W (2011) Effects of pH, ionic strength, temperature, and humic acid on Eu(III) sorption onto iron oxides. J Radioanal Nucl Chem 289(3):757–764CrossRefGoogle Scholar
  19. Li P, Liu Z, Ma F, Shi Q, Guo Z, Wu W (2015) Effects of pH, ionic strength and humic acid on the sorption of neptunium(V) to Na-bentonite. J Mol Liq 206:285–292CrossRefGoogle Scholar
  20. Li P, Ma X, Li H, Li S, Wu H, Xu D, Zheng G, Fan Q (2017a) Sorption mechanism of Th (IV) at iron oxyhydroxide (IOHO)/water interface: Batch, model and spectroscopic studies. J Mol Liq 241:478–485CrossRefGoogle Scholar
  21. Li P, Wu H, Liang J, Yin Z, Pan D, Fan Q, Xu D, Wu W (2017b) Sorption of Eu(III) at feldspar/water interface: effects of pH, organic matter, counter ions, and temperature. Radiochim Acta 105(12):1049–1058CrossRefGoogle Scholar
  22. Li P, Wang J, Wang X, He B, Pan D, Liang J, Wang F, Fan Q (2018) Arsenazo-functionalized magnetic carbon composite for uranium(VI) removal from aqueous solution. J Mol Liq 269:441–449CrossRefGoogle Scholar
  23. Manohar DM, Noeline BF, Anirudhan TS (2006) Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase. Appl Clay Sci 31(3–4):194–206CrossRefGoogle Scholar
  24. Niu ZW, Fan QH, Wang WH, Xu JZ, Chen L, Wu WS (2009) Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl Radiat Isot 67(9):1582–1590CrossRefGoogle Scholar
  25. Pan DQ (2014) Sorption of U(VI), Th(IV) and Eu(III) on mineralogical components of granite and bentonite [D]. Lanzhou University, LanzhouGoogle Scholar
  26. Qi W, Tian LL, Liu B, Lin J, Liu D, Tu PC, Liu D, Li Z, Chen XL, Wu WS (2015) Adsorption of Eu(III) on defective magnetic FeNi/RGO composites: effect of pH, ion strength, ions and humic acid. J Radioanal Nucl Chem 303(3):2211–2220Google Scholar
  27. Rabung TH, Geckeis H, Kim JI, Beck HP (1998) Sorption of Eu(III) on a natural hematite: application of a surface complexation model. J Colloid Interf Sci 208(1):153–161CrossRefGoogle Scholar
  28. Soler JM, Mäder UK (2007) Mineralogical alteration and associated permeability changes induced by a high-pH plume: modeling of a granite core infiltration experiment. Appl Geochem 22(1):17–29CrossRefGoogle Scholar
  29. Spark KM, Wells JD, Johnson BB (1997) The interaction of a humic acid with heavy metals. J Soil Res 35(1):89–101CrossRefGoogle Scholar
  30. Strathmann TJ, Myneni SB (2005) Effect of soil fulvic acid on nickel(II) sorption and bonding at the aqueous-boehmite interface. Environ Sci Technol 39(11):4027–4034CrossRefGoogle Scholar
  31. Sun YN, Chen CL, Tan XL, Shao DD, Li JX, Zhao GX, Yang SB, Wang Q, Wang XK (2012) Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans 43(41):13388–13394CrossRefGoogle Scholar
  32. Sun YB, Li JX, Wang XK (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643CrossRefGoogle Scholar
  33. Tan XL, Fan QH, Wang XK, Grambow B (2009a) Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies. Environ Sci Technol 43(9):3115–3121CrossRefGoogle Scholar
  34. Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009b) Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mat 168(1):458–465CrossRefGoogle Scholar
  35. Tertre E, Berger G, Simoni E, Castet S, Giffaut E, Loubet M, Catalette H (2006) Europium retention onto clay minerals from 25 to 150 °C: Experimental measurements, spectroscopic features and sorption modeling. Geochim Cosmochim Acta 70(18):4563–4578CrossRefGoogle Scholar
  36. Ticknor KV, Vilks P, Vandergraaf TT (1996) The effect of fulvic acid on the sorption of and fission products on granite and selected minerals. Appl Geochem 11(4):555–565CrossRefGoogle Scholar
  37. Wang XK, Dong WM, Dai XX, Wang AX, Du JZ, Tao ZY (2000) Sorption and desorption of Eu and Yb on alumina: Mechanisms and effect of fulvic acid. Appl Radiat Isot 52(2):165–173CrossRefGoogle Scholar
  38. Wang X, Xu D, Chen L, Tan X, Zhou X, Ren A, Chen C (2006) Sorption and complexation of Eu(III) on alumina: effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study. Appl Radiat Isot 64(4):414–421CrossRefGoogle Scholar
  39. Wang XF, Shi KL, Guo ZJ, Wu WS (2010) Eu(III) adsorption on rutile: Batch experiments and modeling. Sci China Chem 53(12):2628–2636CrossRefGoogle Scholar
  40. Wang YQ, Fan QH, Li P, Zheng XB, Xu JZ, Jin YR, Wu WS (2011) The sorption of Eu(III) on calcareous soil: effects of pH, ionic strength, temperature foreign ions and humic acid. J Radioanal Nucl Chem 287(1):231–237CrossRefGoogle Scholar
  41. Wang XX, Sun YB, Alsaedi A, Hayat T, Wang XK (2015) Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques. Chem Eng J 264:570–576CrossRefGoogle Scholar
  42. Wang J, He B, Wei X, Li P, Liang J, Qiang S, Fan Q, Wu W (2018) Sorption of uranyl ions on TiO2: Effects of pH, contact time, ionic strength, temperature and HA. J Environ Sci.  https://doi.org/10.1016/j.jes.2018.03.010 CrossRefGoogle Scholar
  43. Xu JZ, Fan QH, Niu ZW, Li Y, Li P, Wu WS (2012) Studies of Eu (III) sorption on TiO2: Effects of pH, humic acid and poly (acrylic acid). Chem Eng J 179:186–192CrossRefGoogle Scholar
  44. Yu T (2012) Study on sorption of Eu(III) and Am(III) onto red earth and bentonite [D]. Lanzhou University, LanzhouGoogle Scholar
  45. Zhang YJ, Fan XH, Su XG, Zeng JS, Wang Y, Zhou D, Liu DJ, Yao J (2005) Sorption behavior of Pu on granite. J Nucl Radiochem 27(3):137–137Google Scholar
  46. Zhao X, Qiang S, Wu H, Yang Y, Shao D, Fang L, Liang J, Li P, Fan Q (2017a) Exploring the sorption mechanism of Ni(II) on illite: batch sorption, modelling, EXAFS and extraction investigations. Sci Rep 7(1):8495CrossRefGoogle Scholar
  47. Zhao X, Wang Y, Wu H, Fang L, Liang J, Fan Q, Li P (2017b) Insights into the effect of humic acid on Ni(II) sorption mechanism on illite: Batch, XPS and EXAFS investigations. J Mol Liq 248:1030–1038CrossRefGoogle Scholar
  48. Zhong X, Wang J, Hung ST, Wang SH (2012) The quantitative study of Pluton selection for the disposal repository of high level waste in Beishan. Uranium Geol 28(3):187–192Google Scholar
  49. Zhong XJ, Liu X, Duan SX, Yu SJ, Huang YS, Hayat T, Li JX (2016) The adsorption of Eu(III) on carbonaceous nanofibers: Batch experiments and modeling study. J Mol Liq 222:456–462CrossRefGoogle Scholar
  50. Zhu YK, Liu HB, Chen TH, Xu B, Li P (2016) Kinetics and thermodynamics of Eu(III) adsorption onto synthetic monoclinic pyrrhotite. J Mol Liq 218:565–570CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangxi Key Laboratory for Mass Spectrometry and InstrumentationEast China University of TechnologyNanchangChina
  2. 2.Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  3. 3.Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory for Fundamental Science, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations