Advertisement

Residence time patterns of Mirim Lagoon (Brazil) derived from two-dimensional hydrodynamic simulations

  • Douglas Vieira da SilvaEmail author
  • Phelype Haron Oleinik
  • Juliana Costi
  • Eduardo de Paula Kirinus
  • Wiliam Correa Marques
Original Article
  • 65 Downloads

Abstract

Mirim Lagoon (ML) is a large choked lagoon connected to the Patos Lagoon estuary and eventually to Mangueira Lake. Together, these water bodies form the most extensive lagoon system in South America. ML is a transboundary basin shared by Brazil and Uruguay that serves as a water reservoir, providing freshwater for public supply and agricultural activities. This work evaluated the transport patterns and residence time of ML using numerical simulations forced by time series of the tributaries’ discharge and by reanalysis of atmospheric data. The results indicate a mean residence time of 180 days, and spatial and temporal variations of up to 100 days were presented. The discharge conditions and the wind regime are the causes of such high variability on the distribution of the residence time at Mirim Lagoon. This high variability indicates that specific periods are more susceptible to be impacted by exogenous contaminants.

Keywords

Residence time Coastal lake Hydrodynamic Circulation 

Notes

Acknowledgements

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), under contract 304227/2016-1. The authors are also grateful to the Fundação de Amparo à do Estado do Rio Grande do Sul (FAPERGS) for sponsoring this research under the contracts 17/2551-001159-7 and to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for bursaries related to the Programa Nacional de Pós Doutorado. The authors would like to thank the Programa de Apoio à Publicação da Produção Acadêmica/PROPESP/FURG/2018. Further acknowledgments go to the Brazilian Navy for providing detailed bathymetric data for the coastal area; the Brazilian National Water Agency, NOAA and HYCOM, for supplying the boundary condition data sets; and the Open Telemac–Mascaret Consortium for free distribution of the TELEMAC system, making viable this research. Finally, a special thanks is extended to the Supercomputing Center of the Federal University of Rio Grande do Sul (CESUP-UFRGS) and the Sdumont Supercomputer from the Laboratório Nacional de Computação Científica (LNCC) (SDUMONT-2017-C01#166515), where most of the computational work was carried out. Although some data were taken from governmental databases, this paper is not necessarily representative of the views of the government.

References

  1. Albrecht N, Vennell R (2007) Tides in two constricted New Zealand lagoons. N Z J Mar Freshw Res 41(1):103–118CrossRefGoogle Scholar
  2. Angus S (2016) Scottish saline lagoons: impacts and challenges of climate change. Estuar Coast Shelf Sci 198:626–635CrossRefGoogle Scholar
  3. Arega F, Armstrong S, Badr A (2008) Modeling of residence time in the East Scott Creek Estuary, South Carolina. USA. J Hydroenviron Res 2(2):99–108.  https://doi.org/10.1016/j.jher.2008.07.003. http://linkinghub.elsevier.com/retrieve/pii/S1570644308000488
  4. Bird EC (1994) Physical setting and geomorphology of coastal lagoons. Elsevier Oceanogr Ser 60:9–39CrossRefGoogle Scholar
  5. Bradbrook KF, Lane SN, Richards KS (2000) Numerical simulation of three-dimensional, time-averaged flow structure at river channel confluences. Water Resour Res 36(9):2731–2746CrossRefGoogle Scholar
  6. Brito AC, Newton A, Tett P, Fernandes TF (2012) How will shallow coastal lagoons respond to climate change? A modelling investigation. Estuar Coast Shelf Sci 112:98–104CrossRefGoogle Scholar
  7. Buffoni G, Falco P, Griffa A, Zambianchi E (1997) Dispersion processes and residence times in a semi-enclosed basin with recirculating gyres: an application to the Tyrrhenian sea. J Geophys Res Oceans 102(C8):18699–18713CrossRefGoogle Scholar
  8. Canu DM, Solidoro C, Umgiesser G, Cucco A, Ferrarin C (2012) Assessing confinement in coastal lagoons. Mar Pollut Bull 64(11):2391–2398CrossRefGoogle Scholar
  9. Castro Bd, Miranda Ld (1998) Physical oceanography of the Western Atlantic continental shelf located between 4 n and 34 s. Sea 11(1):209–251Google Scholar
  10. Costi J, Oleinik PH, Monteiro CB, Marques WC, Arigony-Neto J (2016) An automated structure for acquiring and processing sentinel-1 data and its applicability for coastal studies. Defect Diffus Forum (Trans Tech Publications) 372:122–131CrossRefGoogle Scholar
  11. Costi J, Marques WC, de Paula Kirinus E, de Freitas Duarte R, Arigony-Neto J (2018) Water level variability of the Mirim-são Gonçalo system, a large, subtropical, semi-enclosed coastal complex. Adv Water Resour 117:75–86CrossRefGoogle Scholar
  12. Csanady G (1973) Wind-induced barotropic motions in long lakes. J Phys Oceanogr 3(4):429–438CrossRefGoogle Scholar
  13. Cucco A, Umgiesser G (2006) Modeling the Venice lagoon residence time. Ecol Model 193(1):34–51CrossRefGoogle Scholar
  14. Cucco A, Umgiesser G (2015) The trapping index: how to integrate the Eulerian and the Lagrangian approach for the computation of the transport time scales of semi-enclosed basins. Mar Pollut Bull 98(1):210–220CrossRefGoogle Scholar
  15. Dee DP, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  16. Dumas F, Stanisière JY, Maurer D (2009) Hydrodynamic characterization of the Arcachon Bay, using model-derived descriptors. Cont Shelf Res 29(8):1008–1013CrossRefGoogle Scholar
  17. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L et al (2007) The shuttle radar topography mission. Rev Geophys 45(2)Google Scholar
  18. Ferrarin C, Umgiesser G, Bajo M, Bellafiore D, De Pascalis F, Ghezzo M, Mattassi G, Scroccaro I (2010) Hydraulic zonation of the lagoons of Marano and Grado, Italy. A modelling approach. Estuar Coast Shelf Sci 87(4):561–572CrossRefGoogle Scholar
  19. Ferrarin C, Bergamasco A, Umgiesser G, Cucco A (2013) Hydrodynamics and spatial zonation of the Capo Peloro coastal system (Sicily) through 3-D numerical modeling. J Mar Syst 117:96–107CrossRefGoogle Scholar
  20. Ferrarin C, Bajo M, Bellafiore D, Cucco A, De Pascalis F, Ghezzo M, Umgiesser G (2014a) Toward homogenization of mediterranean lagoons and their loss of hydrodiversity. Geophys Res Lett 41(16):5935–5941CrossRefGoogle Scholar
  21. Ferrarin C, Zaggia L, Paschini E, Scirocco T, Lorenzetti G, Bajo M, Penna P, Francavilla M, DAdamo R, Guerzoni S (2014b) Hydrological regime and renewal capacity of the micro-tidal Lesina Lagoon, Italy. Estuar Coasts 37(1):79–93CrossRefGoogle Scholar
  22. Fiandrino A, Ouisse V, Dumas F, Lagarde F, Pete R, Malet N, Le Noc S, de Wit R (2017) Spatial patterns in coastal lagoons related to the hydrodynamics of seawater intrusion. Mar Pollut Bull 119(1):132–144CrossRefGoogle Scholar
  23. Ghezzo M, De Pascalis F, Umgiesser G, Zemlys P, Sigovini M, Marcos C, Pérez-Ruzafa A (2015) Connectivity in three European coastal lagoons. Estuar Coasts 38(5):1764–1781CrossRefGoogle Scholar
  24. Grifoll M, Del Campo A, Espino M, Mader J, González M, Borja Á (2013) Water renewal and risk assessment of water pollution in semi-enclosed domains: application to Bilbao harbour (Bay of Biscay). J Mar Syst 109:S241–S251CrossRefGoogle Scholar
  25. Grimm AM, Saboia JP (2015) Interdecadal variability of the South American precipitation in the monsoon season. J Clim 28(2):755–775CrossRefGoogle Scholar
  26. Hervouet JM (2000) Telemac modelling system: an overview. Hydrol Process 14(13):2209–2210CrossRefGoogle Scholar
  27. Hervouet JM (2007) Free surface flows: modelling with finite element methods. Wiley, EnglandGoogle Scholar
  28. Hirata FE, Möller Junior OO, Mata MM (2010) Regime shifts, trends and interannual variations of water level in Mirim Lagoon, Southern Brazil. Pan Am J Aquat Sci 5(2):254–266Google Scholar
  29. Huang W, Spaulding M (2002) Modelling residence-time response to freshwater input in Apalachicola Bay, Florida, USA. Hydrol Process 16(15):3051–3064CrossRefGoogle Scholar
  30. Kämpf J, Ellis H (2014) Hydrodynamics and flushing of Coffin Bay, South Australia: a small tidal inverse estuary of interconnected bays. J Coast Res 31(2):447–456Google Scholar
  31. Kim CK, Park K, Powers SP, Graham WM, Bayha KM (2010) Oyster larval transport in coastal Alabama: dominance of physical transport over biological behavior in a shallow estuary. J Geophys Res 115(C10):C10019.  https://doi.org/10.1029/2010JC006115 CrossRefGoogle Scholar
  32. Kjerfve B (1986) Comparative oceanography of coastal lagoons. Academic Press, New YorkGoogle Scholar
  33. Knoppers B, Kjerfve B, Carmouze JP (1991) Trophic state and water turn-over time in six choked coastal lagoons in Brazil. Biogeochemistry 14(2):149–166CrossRefGoogle Scholar
  34. Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19(23):5971–5987CrossRefGoogle Scholar
  35. Leite Ribeiro M, Blanckaert K, Roy A, Schleiss AJ (2012) Flow and sediment dynamics in channel confluences. J Geophys Res Earth Surf 117(F1):1–19CrossRefGoogle Scholar
  36. Marques W, Fernandes E, Monteiro I, Möller O (2009) Numerical modeling of the Patos Lagoon coastal plume, Brazil. Cont Shelf Res 29(3):556–571.  https://doi.org/10.1016/j.csr.2008.09.022. http://linkinghub.elsevier.com/retrieve/pii/S0278434308003166
  37. Marques WC (2012) The temporal variability of the freshwater discharge and water levels at the Patos Lagoon, Brazil. Int J Geosci 3(04):758CrossRefGoogle Scholar
  38. Mechoso CR, Iribarren GP (1992) Streamflow in southeastern South America and the southern oscillation. J Clim 5(12):1535–1539CrossRefGoogle Scholar
  39. Meyers SD, Luther ME (2008) A numerical simulation of residual circulation in Tampa Bay. Part II: Lagrangian residence time. Estuar Coasts 31(5):815–827CrossRefGoogle Scholar
  40. Meyers SD, Luther ME, Wilson M, Havens H, Linville A, Sopkin K (2007) A numerical simulation of residual circulation in Tampa Bay. Part I: Low-frequency temporal variations. Estuar Coasts 30(4):679–697CrossRefGoogle Scholar
  41. Möller OO, Castaing P, Salomon JC, Lazure P (2001) The influence of local and non-local forcing effects on the subtidal circulation of Patos Lagoon. Estuar Coasts 24(2):297–311CrossRefGoogle Scholar
  42. Möller OO, Castaing P, Fernandes EHL, Lazure P (2007) Tidal frequency dynamics of a southern Brazil coastal lagoon: choking and short period forced oscillations. Estuar Coasts 30(2):311–320CrossRefGoogle Scholar
  43. Möller OO, Piola AR, Freitas AC, Campos EJ (2008) The effects of river discharge and seasonal winds on the shelf off southeastern South America. Cont Shelf Res 28(13):1607–1624CrossRefGoogle Scholar
  44. Monsen NE, Cloern JE, Lucas LV, Monismith SG (2002) A comment on the use of flushing time, residence time, and age as transport time scales. Limnol Oceanogr 47(5):1545–1553.  https://doi.org/10.4319/lo.2002.47.5.1545 CrossRefGoogle Scholar
  45. Nichols MM, Boon JD (1994) Sediment transport processes in coastal lagoons. Elsevier Oceanogr Ser 60:157–219CrossRefGoogle Scholar
  46. Oliveira A, Fortunato AB, Pinto L (2006a) Modelling the hydrodynamics and the fate of passive and active organisms in the Guadiana estuary. Estuar Coast Shelf Sci 70(1–2):76–84.  https://doi.org/10.1016/j.ecss.2006.05.033. http://linkinghub.elsevier.com/retrieve/pii/S0272771406002393
  47. Oliveira A, Fortunato AB, Rego JR (2006b) Effect of morphological changes on the hydrodynamics and flushing properties of the Óbidos lagoon (Portugal). Cont Shelf Res 26(8):917–942.  https://doi.org/10.1016/j.csr.2006.02.011. http://linkinghub.elsevier.com/retrieve/pii/S0278434306000574
  48. Orfila A, Jordi A, Basterretxea G, Vizoso G, Marbà N, Duarte C, Werner F, Tintoré J (2005) Residence time and Posidonia oceanica in Cabrera Archipelago National Park. Spain. Cont Shelf Res 25(11):1339–1352.  https://doi.org/10.1016/j.csr.2005.01.004. http://linkinghub.elsevier.com/retrieve/pii/S0278434305000403
  49. Patgaonkar RS, Vethamony P, Lokesh K, Babu M (2012) Residence time of pollutants discharged in the Gulf of Kachchh, northwestern Arabian Sea. Mar Pollut Bull 64(8):1659–1666.  https://doi.org/10.1016/j.marpolbul.2012.05.033. http://linkinghub.elsevier.com/retrieve/pii/S0025326X12002536
  50. Paula Kirinus Ed, Marques WC (2015) Viability of the application of marine current power generators in the South Brazilian shelf. Appl Energy 155:23–34CrossRefGoogle Scholar
  51. Rodríguez-Gallego L, Achkar M, Defeo O, Vidal L, Meerhoff E, Conde D (2017) Effects of land use changes on eutrophication indicators in five coastal lagoons of the southwestern Atlantic Ocean. Estuar Coast Shelf Sci 188:116–126CrossRefGoogle Scholar
  52. Roselli L, Fabbrocini A, Manzo C, D’Adamo R (2009) Hydrological heterogeneity, nutrient dynamics and water quality of a non-tidal lentic ecosystem (Lesina Lagoon, Italy). Estuar Coast Shelf Sci 84(4):539–552CrossRefGoogle Scholar
  53. Rueda F, Moreno-Ostos E, Armengol J (2006) The residence time of river water in reservoirs. Ecol Model 191(2):260–274CrossRefGoogle Scholar
  54. Safak I, Wiberg P, Richardson D, Kurum M (2015) Controls on residence time and exchange in a system of shallow coastal bays. Cont Shelf Res 97:7–20.  https://doi.org/10.1016/j.csr.2015.01.009. http://linkinghub.elsevier.com/retrieve/pii/S0278434315000205
  55. Sámano ML, Bárcena JF, García A, Gómez AG, Álvarez C, Revilla JA (2012) Flushing time as a descriptor for heavily modified water bodies classification and management: application to the Huelva harbour. J Environ Manag 107:37–44CrossRefGoogle Scholar
  56. Spagnoli F, Specchiulli A, Scirocco T, Carapella G, Villani P, Casolino G, Schiavone P, Franchi M (2002) The Lago di Varano: hydrologic characteristics and sediment composition. Mar Ecol 23(s1):384–394CrossRefGoogle Scholar
  57. Stech JL, Lorenzzetti JA (1992) The response of the South Brazil bight to the passage of wintertime cold fronts. J Geophys Res Oceans 97(C6):9507–9520CrossRefGoogle Scholar
  58. Takeoka H (1984) Fundamental concepts of exchange and transport time scales in a coastal sea. Cont Shelf Res 3(3):311–326.  https://doi.org/10.1016/0278-4343(84)90014-1. http://linkinghub.elsevier.com/retrieve/pii/0278434384900141
  59. Tartinville B, Deleersnijder E, Rancher J (1997) The water residence time in the Mururoa Atoll Lagoon: sensitivity analysis of a three-dimensional model. Coral Reefs 16(3):193–203CrossRefGoogle Scholar
  60. Thackston EL, Shields FD Jr, Schroeder PR (1987) Residence time distributions of shallow basins. J Environ Eng 113(6):1319–1332CrossRefGoogle Scholar
  61. Umgiesser G, Ferrarin C, Cucco A, De Pascalis F, Bellafiore D, Ghezzo M, Bajo M (2014) Comparative hydrodynamics of 10 mediterranean lagoons by means of numerical modeling. J Geophys Res Oceans 119(4):2212–2226.  https://doi.org/10.1002/2013JC009512 CrossRefGoogle Scholar
  62. Wan Y, Qiu C, Doering P, Ashton M, Sun D, Coley T (2013) Modeling residence time with a three-dimensional hydrodynamic model: linkage with chlorophyll a in a subtropical estuary. Ecol Model 268:93–102CrossRefGoogle Scholar
  63. Webb BM, Marr C (2016) Spatial variability of hydrodynamic timescales in a broad and shallow estuary: Mobile Bay, Alabama. J Coast Res 32(6):1374–1388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Douglas Vieira da Silva
    • 1
    Email author
  • Phelype Haron Oleinik
    • 2
  • Juliana Costi
    • 3
  • Eduardo de Paula Kirinus
    • 2
  • Wiliam Correa Marques
    • 1
  1. 1.Instituto de OceanografiaUniversidade Federal do Rio GrandeRio GrandeBrazil
  2. 2.Escola de EngenhariaUniversidade Federal do Rio GrandeRio GrandeBrazil
  3. 3.Instituto de Matemática, Estatística e FísicaUniversidade Federal do Rio GrandeRio GrandeBrazil

Personalised recommendations