Advertisement

Tailing’s geomorphology of the San Quintín mining site (Spain): landform catalogue, aeolian erosion and environmental implications

  • Ramón Sánchez-DonosoEmail author
  • José F. Martín-Duque
  • Elena Crespo
  • Pablo L. Higueras
Original Article
  • 84 Downloads

Abstract

The research on tailings deposits regarding geomorphic approaches, aeolian activity and integrated physical–chemical dynamics and instability is almost inexistent. This work performs such analysis at the San Quintín Mine site, located on the Alcudia Valley region of central-south Spain. The first evidence of mining activity on San Quintín goes back to 1559 and the last one to 1988. The mine activity here produced two very different deposits. ‘Old tailings’ correspond to early concentration procedures between 1889 and 1923. The resulting piles look chaotic and the tailings vertically and laterally alternate with rock wastes. These deposits have been eroded, mostly, by fluvial processes. ‘Modern tailings’ deposits correspond to more efficient froth flotation treatments, between 1973 and 1988, when part of the old tailings were reprocessed. The grain size of these latter tailings is more homogenous, mostly sandy, which favour intense aeolian erosion. By means of a detailed inventory, we were able to identify and catalogue both fluvial and aeolian landforms, along with those produced by weathering or mass movement. We also quantified aeolian erosion, obtaining a single net wind transport rate of 12.6 t ha−1 year−1, related to WSW winds. From an understanding of the geomorphic activity of the mined area, we propose guidelines for the restoration and remediation of the site, comprising wind erosion prevention measures for the modern tailings and physical stabilization through geomorphic restoration for the old tailings, combined with chemical remediation measures that have been proved useful on similar cases: open limestone channels connected to constructed wetlands.

Keywords

Mining geomorphology Tailing deposits Aeolian erosion Fluvial erosion Mine restoration and remediation 

Notes

Acknowledgements

This study has been funded by: (1) Project CGL2015-67644-R (Spanish Ministry of Economy and Competitiveness) (2) The Ecological Restoration Network REMEDINAL-3 of the Madrid Community (S2013/MAE-2719).

References

  1. Agencia Española de Meteorología (AEMET) (2017) Open acces meteorological data. Can be consulted here: http://www.aemet.es/es/portada. Accessed 23 Sept 2017
  2. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, LondonGoogle Scholar
  3. Blake GR (1965) Bulk density. Methods Soil Anal Agron 9(1):375–377Google Scholar
  4. Blight GE (1989) Erosion losses from the surfaces of gold-tailings dams. J S Afr Inst Min Metall 89(1):23–29Google Scholar
  5. Blight GE (2007) Wind erosion of tailings and mitigation of the dust nuisance. J S Afr Inst Min Metall 107(2):99–107Google Scholar
  6. Brice JC (1966) Erosion and deposition in the loess-mantled great plains. Medicine Creek drainage basin, Nebraska. U.S. Geological Survey Professional Paper, 325, pp 255–335Google Scholar
  7. Cooper AH (2006) Gypsum dissolution geohazards at Ripon, North Yorkshire, UK. IAEG2006 Field Trip Guide Ripon. The Geological Society of London. http://www.bgs.ac.uk/downloads/start.cfm?id=1233. Accessed 25 Sept 2017
  8. Dick WJ, Sawatsky LF, Beckstead G, Sweet WC (1995) Water erosion prediction for a tailings surface using the WEPP model. In: 1995 annual conference of the Canadian Society for Civil Engineering. Ontario, Canada, pp 155–162Google Scholar
  9. Djebbi C, Chaanabi F, Font O, Queralt I, Querol X (2017) Atmospheric dust deposition on soils around an abandoned fluorite mine (Hammam Zriba, NE Tunisia). Environ Res 158:153–166CrossRefGoogle Scholar
  10. Dong Z, Liu X, Wang H, Wang X (2003) Aeolian sand transport: a wind tunnel model. Sediment Geol 161:71–83CrossRefGoogle Scholar
  11. Gómez Miguel V (2006) Mapa de suelos de España. Escala 1:1,000,000. Instituto Geográfico Nacional, MadridGoogle Scholar
  12. Greeley R, Iversen JI (1985) Wind as a geological process. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Gutiérrez Elorza M (2009) Geomorfología. Pearson/Prentice Hall, Madrid (in Spanish) Google Scholar
  14. Hancock GR, Willgoose G, G. R (2004) An experimental and computer simulation study of erosion on a mine tailings dam wall. Earth Surf Proc Land 29(4):457–475CrossRefGoogle Scholar
  15. Hesp P (2002) Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology 48(1–3):245–268CrossRefGoogle Scholar
  16. Hooke R (1994) On the efficacy of humans as geomorphic agents. GSA Today 4(9):217–225Google Scholar
  17. Hooke R (1999) Spatial distribution of human geomorphic activity in the United States: comparison with rivers. Earth Surf Proc Land 24:687–692CrossRefGoogle Scholar
  18. Hooke R (2000) On the history of human as geomorphic agent. Geology 28(9):845–846CrossRefGoogle Scholar
  19. Hooke R, Martín-Duque J, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22(12):4–10CrossRefGoogle Scholar
  20. Kawamura R (1951) Study on sand movement by wind. Rep Phys Sci Res Inst Tokyo Univ 5(3–4):95–112Google Scholar
  21. Lettau H, Lettau HH (1978) Experimental and micro-meteorological field studies of dune migration. In: Lettau HH, Lettau K (eds) Exploring the world’s driest climate. IES report, vol 101. University of Winsconsin, Madison, pp 110–147Google Scholar
  22. Martín Duque J, Zapico I, Oyarzun R, López García JA, Cubas P (2015) A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: new insight and environmental implication from SE Spain. Geomorphology 239:1–16CrossRefGoogle Scholar
  23. Martín-Crespo T, Gómez-Ortiz D, Martín-Velázquez S, Esbrí JM, Ignacio-San José C, Sánchez-García MJ, Montoya-Montes I, Martín-González F (2015) Abandoned mine tailings in cultural itineraries: Don Quixote Route (Spain). Eng Geol 197:82–93CrossRefGoogle Scholar
  24. Mudd G, Boger D (2013) The ever growing case for paste and thickened tailings: towards more sustainable mine waste management. AusIMM Bull 2:56–59Google Scholar
  25. O’Brien MP, Rindlaub BD (1936) The transportation of sand by wind. Civ Eng 6:325–327Google Scholar
  26. Ojelede ME, Annegarn HJ, Kneen MA (2012) Evaluation of Aeolian emissions from gold mine tailings on the Witwatersrand. Aeol Res 3(4):477–486CrossRefGoogle Scholar
  27. Oyarzun R, Fernández Barrenechea J, Esbrí JM, Higueras P, Lillo J, Martínez Coronado A, López García JA, López Andrés S (2010) Geoquímica Ambiental en San Quintín. Universidad Complutense de Madrid, Proyecto de Innovación, 123 (in Spanish) Google Scholar
  28. Oyarzun R, Higueras P, Lillo J (2011a) Minería Ambiental: Una Introducción a los Impactos y su Remediación. Ediciones GEMM, Spain (in Spanish) Google Scholar
  29. Oyarzun R, Lillo J, López-García JA, Esbrí JM, Cubas P, Llanos W, Higueras P (2011b) The Mazarrón Pb–(Ag)–Zn mining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: geochemical data from mine wastes, soils, and stream sediments. J Geochem Explor 109(1–3):113–124CrossRefGoogle Scholar
  30. Palero FJ, Martín-Izard A (2005) Trace element contents in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain). J Geochem Explor 86(1):1–25CrossRefGoogle Scholar
  31. Palero FJ, Both RA, Arribas A, Boyce AJ, Mangas J, Martín-Izard A (2003) Geology and metallogenic evolution of the polymetallic deposits of the Alcudia valley mineral field, Eastern Sierra Morena, Spain. Econ Geol 98(3):577–605Google Scholar
  32. Perkins W, Bird G, Jacobs S, Devoy C (2015) Field-scale study of the influence of differing remediation strategies on trace metal geochemistry in metal mine tailings from the Irish Midlands. Environ Sci Pollut Res 23(6):5592–5608Google Scholar
  33. Plan Nacional de Ortofotografía Aérea (PNOA) (2015) Open Access cartographical data. Can be consulted here: http://pnoa.ign.es/. Accessed 13 Aug 2017
  34. Riley SJ (1995) Geomorphic estimates of the stability of a uranium mill tailings containment cover: Nabarlek, Northern Territory, Australia. Land Degrad Rehabil 6:1–16CrossRefGoogle Scholar
  35. Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J Environ Manag 90(2):1106–1116CrossRefGoogle Scholar
  36. Sawatsky L, Tuttle S (1996) Ocurrence and growth of gullies on mine disturbed land. In: 21st annual meeting. Canadian Land Reclamation Association, Calgary, AlbertaGoogle Scholar
  37. Sherman DJ, Jackson DW, Namikas SL, Wang J (1998) Wind-blown sand on beaches: an evaluation of models. Geomorphology 22(2):113–133CrossRefGoogle Scholar
  38. Sima M, Dold B, Frei L, Balteanu D, Zobrist J (2011) Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania. J Hazard Mater 189:624–639CrossRefGoogle Scholar
  39. Skousen J (1998) Overview of passive systems for treating acid mine drainage. In: Barnhisel RI (ed) Reclamation of drastically disturbed lands. American Society of Agronomy, MadisonGoogle Scholar
  40. Soil Survey Staff (2013) Simplified guide to soil taxonomy. United States Department of AgricultureGoogle Scholar
  41. Verheijen FG, Jones RJ, Rickson RJ, Smith CJ (2009) Tolerable versus actual soil erosion rates in Europe. Earth Sci Rev 94:23–38CrossRefGoogle Scholar
  42. Wang J, Liu W, Yang R, Zhang L, Ma J (2013) Assessment of the potential ecological risk of heavy metals in reclaimed soils at an opencast coal mine. Disaster Adv 6(S3):366–377Google Scholar
  43. Zhang L, Wang J, Bai Z, Lv C (2015) Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 128:44–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias GeológicasUniversidad Complutense, Instituto de Geociencias, IGEO (CSIC, UCM)MadridSpain
  2. 2.Departamento de Mineralogía y Petrología, Facultad de Ciencias GeológicasUniversidad ComplutenseMadridSpain
  3. 3.Departamento de Ingeniería Geológica y MineraEscuela Universitaria Politécnica de Almadén, Universidad de Castilla-La ManchaAlmadénSpain

Personalised recommendations