Advertisement

Interaction between lakes’ surface water and groundwater in the Pantanal wetland, Brazil

  • J. G. Freitas
  • S. A. C. FurquimEmail author
  • R. Aravena
  • E. L. Cardoso
Original Article
  • 114 Downloads

Abstract

The Nhecolândia subregion (area ~ 26,921 km2), in central-southern Pantanal, is marked by the presence of hundreds of alkaline–saline lakes, located on the top of sand hills, and thousands of non-alkaline lakes adjacent to the sand hills. This study aimed to provide a better understanding of the hydrological dynamics in the Nhecolândia, which is scarce and controversial, based on piezometric monitoring, isotopic data and chemical analyses of the surface water and groundwater of an alkaline–saline lake, a non-alkaline lake and the sand hill between them. The potentiometric data indicated that both alkaline–saline and non-alkaline lakes act as recharge zones, the former in all seasons and the later only in the wet season. These results are corroborated by downward flow near the zones of recharge, indicated by hydraulic head measurements in multilevel wells around the non-alkaline lake and in mini-piezometers installed in the studied alkaline–saline lake and two more lakes in the region. Also, δ18O and δ2H values of the alkaline–saline lake surface water became more depleted than the surrounding groundwater in the wet season, confirming that the inflow to the alkaline–saline lake in this season was by the more depleted rainwater and not by the isotopically enriched groundwater. The water chemistry data is also in agreement with recharge from the alkaline–saline lake, even though this recharge is limited by a low-K layer. Because of this layer, the non-alkaline lake does not dry off during the dry season. This set of evidence demonstrated that the groundwater recharge in the study area occurs in the topographical lows, through a process known as depression-focused recharge, which disagrees with previous studies of the area.

Keywords

Groundwater–surface water interaction Wetland Depression-focused recharge 

Notes

Acknowledgements

The authors would like to thank the support from Empresa Brasileira de Pesquisas Agropecuárias (EMBRAPA Pantanal) and the financial support from FAPESP (2011/22491-0). We also thanks INCT de Estudos do Meio Ambiente (INCT-EMA) (CNPq: 703905/2009 and FAPESP: 2008/57708-7) and Centro Cooperativo de Engenharia Ambiental (CEPEMA) (Processo FAPESP: 2013/50218-2).

References

  1. Alfonsi RR, Camargo MBP (1986) Condições climáticas para a região do Pantanal Matogrossense. In: Anais do 1° Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal. Corumbá (MS), Brazil, pp 29–42Google Scholar
  2. Almeida TIR, Sígolo JB, Fernandes E, Queiroz Neto JP, Barbiero L, Sakamoto AY (2003) Proposta de Classificação e Gênese das Lagoas da Baixa Nhecolândia—MS com Base em Sensoriamento Remoto. Revista Brasileira de Geociências 33:83–90CrossRefGoogle Scholar
  3. Almeida TIR, Karmann I, Paranhos Filho ACP, Sígolo JB, Bertolo RA (2010) Os diferentes graus de isolamento da água subterrânea como origem de sua variabilidade: evidências isotópicas, hidroquímicas e da variação sazonal do nível da água no Pantanal da Nhecolândia. Geologia USP Série Científica 10:37–47CrossRefGoogle Scholar
  4. Alvarenga SM, Brasil AE, Pinheiro R, Kux HJH (1984) Estudo Geomorfológico Aplicado à Bacia do Alto Rio Paraguai e Pantanais Matogrossenses. Boletim Técnico Projeto Radambrasil 1:187Google Scholar
  5. Assine ML (2003) Sedimentação na Bacia do Pantanal Mato-Grossense, Centro-Oeste do Brasil. Tese de Livre-Docência, UNESP, Instituto de Geociências e Ciências Exatas, Rio Claro, p 106Google Scholar
  6. Assine ML, Merino ER, Pupim FP, Macedo HA, Santos MGM (2015) The Quaternary alluvial systems tract of the Pantanal Basin, Brazil. Braz J Geol 45:475–489CrossRefGoogle Scholar
  7. Barbiero L, Queiroz Neto JP, Ciornei G, Sakamoto AY, Capellari B, Fernandes E, Valles V (2002) Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes. Wetlands 22(3):528–540CrossRefGoogle Scholar
  8. Barbiero L, Rezende Filho A, Furquim SAC, Furian S, Sakamoto AY, Valles V, Graham RC, Fort M, Ferreira RPD, Queiroz Neto JP (2008) Soil morphological control on saline and freshwater lake hydrogeochemistry in the Pantanal of Nhecolândia, Brazil. Geoderma 148(1):91–106CrossRefGoogle Scholar
  9. Barbiero L, Berger G, Filho ATR, Meunier JF, Martins-Silva ER, Furian S (2017) Organic Control of dioctahedral and trioctahedral clay formation in an alkaline soil system in the Pantanal Wetland of Nhecolandia, Brazil. PLoS One 11(7):1–23Google Scholar
  10. Barbiero L, Siqueira Neto M, Braz RR, Carmo JB, Rezende Filho AT, Mazzi E, Fernandes FA, Damato SR, Camargo PB (2018) Biogeochemical diversity, O2-supersaturation and hot moments of GHG emissions from shallow alkaline lakes in the Pantanal of Nhecolandia, Brazil. Sci Total Environ 619–620:1420–1430CrossRefGoogle Scholar
  11. Berbery EH, Barros VR (2002) The hydrologic cycle of the La Plata Basin in South America. J Hydrometeorol 3:630–645CrossRefGoogle Scholar
  12. Berthold S, Bentley LR, Hayashi M (2004) Integrated hydrogeological and geophysical study of depression-focused groundwater recharge in the Canadian prairies. Water Resour Res 40:1–14CrossRefGoogle Scholar
  13. Bradley C, Baker A, Cumberland S, Boomer I, Morrissey IP (2007) Dynamics of water movement and trends in dissolved carbon in a headwater wetland in a permeable catchment. Wetlands 27(4):1066–1080CrossRefGoogle Scholar
  14. Brady PV, Walther JV (1989) Controls on silicate dissolution rates in neutral and basic pH solutions at 25 °C. Geochim Cosmochim Acta 53:2823–2830CrossRefGoogle Scholar
  15. Capellari B (2001) Sensoriamento remoto aplicado ao estudo da dinâmica hidrológica da região da Nhecolândia, Pantanal Matogrossense, MS. Dissertação de Mestrado, Universidade de São Paulo-USP, Departamento de Geografia, p 100Google Scholar
  16. Carvalho N (1986) Hidrologia da Bacia do Alto Paraguai. In: Anais do 1° Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal. Corumbá (MS), Brazil, pp 43–49Google Scholar
  17. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, Boca Raton, p 328Google Scholar
  18. Collischonn W, Tucci CEM, Clarke RT (2001) Further evidence of changes in the hydrological regime of the River Paraguay: part of a wider phenomenon of climate change? J Hydrol 245:218–238CrossRefGoogle Scholar
  19. Cordeiro NV (1999) Environmental management issues in the Plata basin. In: Biswas AK, Cordeiro NC, Braga BPF, Tortajada C (eds) Management of Latin America river basins: Amazon, Plata and São Francisco. Water Resources Management and Policy Series Editors, New York, pp 148–173Google Scholar
  20. Costa M, Telmer KH, Evans TL, Almeida TI, Diakun MT (2015) The lakes of the Pantanal: inventory, distribution, geochemistry, and surrounding landscape. Wetl Ecol Manag 23(1):19–39CrossRefGoogle Scholar
  21. Del’Arco JO, Silva RH, Tarapanoff I, Freire FA, Pereira LGM, Souza SL, Luz DS, Palmeira RCB, Tassinari CCG (1982) Geologia da Folha SE.21-Corumbá e Parte da Folha SE.20. In: RADAMBRASIL-Levantamento dos Recursos Naturais. Rio de Janeiro, pp 25–160Google Scholar
  22. Delin GN, Healy RW, Landon MK, Bohlke K (2000) Effects of topography and soils properties on recharge at two sites in an agricultural field. J Am Water Resour Assoc 36(6):1401–1416CrossRefGoogle Scholar
  23. Evans TL, Costa M (2013) Landcover classification of the lower Nhecolândia subregion of the Brazilian Pantanal wetland using ALOS/PALSAR, RADARSAT-2 and NVISAT/ASAR imagery. Remote Sens Environ 128:118–127CrossRefGoogle Scholar
  24. FAO—Food and Agriculture Organization of the United Nation (2016) La Plata Basin. AQUASTAT database. http://www.fao.org/nr/water/aquastat/basins/la-plata/index.stm. Accessed May 2017
  25. Fernandes E, Sakamoto AY, Queiroz Neto JP, Lucati HM, Capellari B (1999) Le Pantanal da Nhecolândia, Mato Grosso: cadre physique et dynamique hydrologique. Geografia Física e Dinamica Quaternaria 22:13–21Google Scholar
  26. Furian S, Martins ERC, Parizotto MT, Rezende Filho A, Victoria RL, Barbiero L (2013) Chemical diversity and spatial variability in myriad lakes in Nhecolândia in the Pantanal wetlands of Brazil. Limnol Oceanogr 58(6):2249–2261CrossRefGoogle Scholar
  27. Furquim SAC (2007) Formação de Carbonatos e Argilominerais em Solos Sódicos no Pantanal Sul-Mato-Grossense. Tese de Doutorado, Universidade de São Paulo (USP), Departamento de GeografiaGoogle Scholar
  28. Furquim SAC, Graham R, Barbiéro L, Queiroz Neto JP, Vallès V (2008) Mineralogy and genesis of smectites in an alkaline-saline environment of Pantanal wetland, Brazil. Clays Clay Miner 56:580–596CrossRefGoogle Scholar
  29. Furquim SAC, Graham RC, Queiroz Neto BL, Vidal-Torrado JP P (2010a) Soil mineral genesis and distribution in a saline lake landscape of the Pantanal Wetland, Brazil. Geoderma 154:518–528CrossRefGoogle Scholar
  30. Furquim SAC, Barbiéro L, Graham RC, Queiroz Neto JP, Dias Ferreira RP, Furian S (2010b) Neoformation of micas in soils surrounding an alkaline-saline lake of Pantanal wetland, Brazil. Geoderma 158:331–342CrossRefGoogle Scholar
  31. Godoi Filho JD (1986) Aspectos Geológicos do Pantanal Mato-grossense e de sua Área de Influência. In: Anais do 1° Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal. Corumbá (MS), Brazil, pp 63–76Google Scholar
  32. Google Earth 7.3.2 (2017) [Aerial image of Pantanal wetland, Brazil; coordinates 18°58'27.59″ S and 56°38'51.01″ O]. Retrieved August 2 2017Google Scholar
  33. Hamilton SK (1999) Potential effects of a major navigation project (Paraguay-Paraná Hidrovía) on inundation in the Pantanal floodplains. Regul Rivers Res Manag 15:289–299CrossRefGoogle Scholar
  34. Hamilton SK, Sippel SJ, Melack JM (1996) Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Arch Hydrobiol 137(1):1–23Google Scholar
  35. Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among major South American floodplains. J Geophys Res 107:1–14Google Scholar
  36. Hellman R (1994) The albite-water system: part I. The kinetics of dissolution as a function of pH at 100, 200, and 300 °C. Geochim Cosmochim Acta 58:595–611CrossRefGoogle Scholar
  37. Jacks G, Traoré MS (2014) Mechanisms and rates of groundwater recharge at Timbuktu, Republic of Mali. J Hydrol Eng 19(2):422–427CrossRefGoogle Scholar
  38. Junk WJ, Cunha CN, Wantzen KM, Petermann P, Strussmann C, Marques MI, Adis J (2006) Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat Sci 68:278–309CrossRefGoogle Scholar
  39. Kebede S, Abdalla O, Sefelnasr A, Tindimugaya C, Mustafa O (2016) Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence. Hydrogeol J 25(3):1–20Google Scholar
  40. Knauss KG, Copenhaver SA (1995) The effect of malonate on the dissolution kinetics of albite, quartz, and microcline as a function of pH at 70 °C. Appl Geochem 10:17–33CrossRefGoogle Scholar
  41. Lee DR, Cherry JA (1978) A field exercise on groundwater flow using seepage meter and mini-piezometers. J Geol Educ 27:6–9CrossRefGoogle Scholar
  42. Lissey A (1971) Depression-focused transient groundwater flow patterns in Manitoba. Geol Assoc Can Spec Pap 9:333–341Google Scholar
  43. Logan WS, Rudolph DL (1997) Microdepression-focused recharge in a coastal wetland, La Plata, Argentina. J Hydrol 194:221–238CrossRefGoogle Scholar
  44. Montalván FJ, Heredia J, Ruiz JM, Pardo-Igúzquiza E, García de Domingo A, Elorza FJ (2017) Hydrochemical and isotopes studies in a hypersaline wetland to define the hydrogeological conceptual model: Fuente de Piedra Lake (Malaga, Spain). Sci Total Environ 576:335–346CrossRefGoogle Scholar
  45. OEA—Organización de los Estados Americanos (2017) Análisis Diagnóstico Transfronterizo de la Cuenca del Plata-ADT. Ciudad Autónoma de Buenos Aires: Comité Intergubernamental Coordinador de los Países de la Cuenca del Plata-CICGoogle Scholar
  46. Oliveira PTS, Leite MB, Mattos T, Nearing MA, Scott RL, Xavier RO, Matos DMS, Wendland E (2017) Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrol 10:1–8CrossRefGoogle Scholar
  47. Padovani CR (2010) Dinâmica espaço-temporal das inundações no Pantanal. Tese de Doutorado, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (Esalq), p 174Google Scholar
  48. Phillips PJ, Shedlock RJ (1993) Hydrology and chemistry of groundwater and seasonal ponds in the Atlantic Coastal Plain in Delaware, USA. J Hydrol 141:157–178CrossRefGoogle Scholar
  49. Por FD (1995) The Pantanal of Mato Grosso (Brazil)—world’s largest wetland. Kluwer Academic Publishers, Dordrecht, p 122CrossRefGoogle Scholar
  50. Post VEA (2012) Electrical conductivity as a proxy for groundwater density in coastal aquifers. Ground Water 50(5):785–792CrossRefGoogle Scholar
  51. Rosenberry DO, Lewandowski J, Meinikmann K, Nützmann G (2015) Groundwater—the disregarded component in lake water and nutrient budgets. Part 1: effects of groundwater on hydrology. Hydrol Process 29(13):2895–2921CrossRefGoogle Scholar
  52. Schoeneberger PJ, Wysocki DA, Benham EC, Soil Survey Staff (2012) Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, LincolnGoogle Scholar
  53. Scott DA (1991) Latin America and the Caribbean. In: Finlayson CM, Moser ME (eds) Wetlands: a global perspective. Facts on File, New York, pp 85–114Google Scholar
  54. Silva TC (1986) Contribuição da Geomorfologia para o Conhecimento e Valorização do Pantanal. In: Anais do 1° Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal, Corumbá (MS), Brazil, pp 77–90Google Scholar
  55. Silva CJ, Wantzen KM, Nunes da Cunha C, Machado FDA (2001) Biodiversity in the Pantanal Wetland, Brazil. In: Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation, vol 2. Backhuys Publishers, Leiden, pp 187–215Google Scholar
  56. USEPA (1999) Method 300.1—determination of inorganic ions in drinking water by ion chromatography. Revision 1.0Google Scholar
  57. USEPA (2007) Method 3015A—microwave assisted acid digestion of aqueous samples and extracts. Revision 1Google Scholar
  58. Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45CrossRefGoogle Scholar
  59. Zani H, Assine ML, Araújo BC, Merino ER, Silva A, Fancicani EM (2006) Lobos deposicionais na evolução do megaleque do rio Taquari, Pantanal Mato-grossense. In: Anais do 1° Simpósio de Geotecnologias no Pantanal, Embrapa Informática Agropecuária/INPE, p 285–292Google Scholar
  60. Zani H, Assine ML, McGlue MM (2012) Remote sensing analysis of depositional landforms in alluvial settings: method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology 161–162:82–92CrossRefGoogle Scholar
  61. Zevenbergen AF (2012) A modelling study on the effect of groundwater on vegetation and the effect of vegetation on groundwater in the Pantanal of Mato Grosso, Brazil. MSc Thesis, University of UtrechGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. G. Freitas
    • 1
  • S. A. C. Furquim
    • 1
    Email author
  • R. Aravena
    • 2
  • E. L. Cardoso
    • 3
  1. 1.Department of Environmental SciencesUniversidade Federal de São Paulo (UNIFESP)DiademaBrazil
  2. 2.Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada
  3. 3.Empresa Brasileira de Pesquisas Agropecuárias, EMBRAPA, Corumbá-MSCorumbáBrazil

Personalised recommendations